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ARTICLE INFO ABSTRACT

Keywords: This paper presents a three-dimensional stability analysis of a circular tunnel face in non-homogeneous and
Clays anisotropic undrained clay using the kinematic approach (upper bound) of limit analysis. The proposed failure
Tunnel face stability mechanism consists of a cylindrical rigid block and a toroidal shear zone with variable radius, and the closed-
Three dimensions form analytical expressions of velocity field are derived within the framework of an orthogonal curvilinear
Limit analysis coordinate system. The critical collapse-supporting pressure and stability ratio are obtained through optimiza-
tion with respect to the geometrical parameters of the mechanism. Two types of non-homogeneous undrained
strength, linearly changing with depth, and two-layer clays with constant undrained strength are investigated.
Meanwhile, the 3-D finite element analysis is employed to validate the proposed failure mechanism. The upper
bound solutions of the stability ratio of the proposed mechanism compare reasonably well with the upper bound
solutions from the finite element analysis and show significant improvements over the existing upper bound
solutions in single layer clays with homogeneous and isotropic undrained strength. The results show that the
critical collapse pressure decreases with the increase in the non-homogeneous ratio and the anisotropic ratio and

increases with the ratio between the undrained strength of the top layer and of the bottom layer.

1. Introduction

In practical tunnelling projects using a pressurized shield, it is of
vital importance to determine the adequate range of the face-sup-
porting pressure applied by the shield. If the supporting pressure is not
sufficient, the soil will move towards the tunnel face, and a soil collapse
may occur. In contrast, if the supporting pressure is too great, the soil is
“pushed” towards the ground surface, and then a blowout may appear.
Therefore, it is desirable to determine the adequate range of face sup-
porting pressure to prevent both kinds of failure.

Under three-dimensional conditions, the stability of the tunnel face
of circular tunnels in purely cohesive soil has been investigated by
several authors in the literature. Some authors have adopted the kine-
matic approach of limit analysis [1-7]. Davis et al. [1] proposed a
translational failure mechanism based on two oval-shaped rigid blocks,
while only an inscribed elliptical area of the tunnel face was considered
in the failure mechanism. The failure mechanisms considering the en-
tire tunnel face were developed by Mollon et al. [2,3], mechanisms in
which the translational or rotational movements of the rigid blocks
were generated by a spatial discretization technique. Klar et al. [4]

suggested a new mechanism with a continuous velocity field based on
the use of incompressible flow fields derived from the theory of elas-
ticity and the concept of sinks and sources. The proposed velocity field
is proportional to the elastic displacement field, while only partial
failure of the tunnel face was involved. Mollon et al. [5] constructed
two ingenious toroidal failure mechanisms based on the deformation
fields observed in centrifuge tests and numerical analysis of undrained
clay. One mechanism is based on a symmetrical velocity field and the
other is based on a non-symmetrical velocity field. Those mechanisms
involve a continuous velocity field with no discontinuities at the
boundaries, and they were computed by a mixed analytical-numerical
procedure. Klar and Klein [6] investigated those mechanisms using a
closed-form analytical expression, and both the upper-bound calcula-
tions of stability and the mobilized strength design (MSD) calculations
of volume loss were performed. Moreover, Zhang et al. [7] further in-
vestigated the mechanism involving a non-symmetrical velocity field
proposed by Mollon et al. [5] with some modifications, and the upper
bound analyses were performed using a closed-form expression to in-
vestigate the face stability of the circular tunnels in clay with a linearly
increased undrained strength.
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Among the works mentioned above, soils are assumed to be mate-
rials with isotropic strength. However, due to the preferred particle
orientation during sedimentation and the spatial variation of the fabric,
as well as the complex and anisotropic stress states of loading or un-
loading, most natural soils exhibit anisotropic strength characteristics.
Yang et al. [8] studied the influence of anisotropic and non-homo-
geneous strength on the critical supporting pressure of the tunnel face
in a c-@ soil under two-dimensional conditions. Both the anisotropy of
the friction angle and cohesion are considered. Pan and Dias [9] studied
the three-dimensional face stability of the tunnel face in multi-layered
c-@ soil using the spatial discretization technique, and the anisotropy of
soil cohesion is considered. Klar and Elkayam [10] investigated the
stability of the tunnel face based on a new asymmetric yield function
that allows the shearing strength in the extension mode to be smaller
than the shearing strength in the compression mode. The kinematically
admissible velocity fields for upper bound analysis were generated
numerically. All these studies showed that the anisotropy of strength
exerts significant influence on the critical supporting pressure.

For the face stability problems in purely cohesive soil, the influence
of anisotropic undrained strength has not so far been investigated.
Therefore, this paper focusses on the three-dimensional face stability of
a circular tunnel in non-homogeneous and anisotropic undrained clay
using the kinematic approach of limit analysis. A mechanism consisting
of a rigid block and a distortional shear zone is first presented, different
from the failure mechanisms comprised of either rigid blocks or dis-
tortional shear zones mentioned above. Within the failure mechanism,
the entire circular area of the tunnel face was considered, as well as the
soil mass in the distortional shear zone “flow” towards the tunnel face
rather than the translation or rotational motion of the rigid blocks. The
upper bound calculations were performed within the framework of an
orthogonal curvilinear coordinate system. The proposed mechanism is
first validated by comparing with the results of the three-dimensional
finite element analysis as well as other existing solutions. Then, two
types of non-homogeneous undrained strength, linearly changing with
depth and two-layer clay with constant undrained strength, are ana-
lysed. For both types, the impact of anisotropy of undrained strength on
the critical collapse pressure and failure mechanism is considered and
discussed.

2. Problem statement

A circular tunnel with diameter D excavated under a cover depth C
in two-layered clays is considered. Fig. 1 illustrates the geometry and
parameters of the idealized problem. The load surcharge or on the
ground surface and the supporting pressure os on the tunnel face are
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Fig. 2. Failure mechanism in plane of symmetry x = 0.

assumed to be uniformly distributed, as shown in Fig. 2. The top layer
of clay of thickness H is underlain by a clay layer with infinite depth.
The undrained strength of the clay layers can be characterized by the
following equation, as

{Cuo—t + 0z, 0<
cu(z) =
cuo—b + p(z—H), H< (€))
where c¢,0., and ¢, are the undrained strength at the ground surface
and the top-bottom interface, respectively. p = dc,/dz is the rate of the
undrained strength c, increasing with depth z.

The anisotropic shear strength of the soil refers to the values of
undrained shear strength changing with the rotation of the largest
major principal stress. The anisotropy of the undrained shear strength
has been investigated by many researchers [11-13], and the variation
of the undrained strength with direction can be described approxi-
mately by the curves in Fig. 3. The anisotropic undrained shear strength
at the place where the major principal stress is inclined at an angle i to
the vertical direction can be expressed as [11,12]

cu(i) = cun + (Cuv—Cuh)COSZi 2)

where c,, and c,, are the vertical and horizontal undrained shear
strength, respectively, i is the inclination of major principal stress with
vertical direction. For undrained conditions, the relative velocities are
parallel to the respective discontinuities and assumed to be inclined at
an angle 5t/4 to the directions of major principal stresses. Therefore, the
anisotropic angle i can be calculated directly from the directions of
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Fig. 1. General layout and failure mechanism of the problem.
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