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A B S T R A C T

Finite element solution of poromechanical problems often exhibits oscillating pore pressures, if the time step is
small relative to the spatial grid size. Here the nonphysical oscillations in the pore pressure are investigated and
a novel analytical approach is presented, which satisfies the non-oscillatory criteria for compressible porous
medium modeling. With the consistent and the lumped finite element schemes considered, the time-step con-
straints for three different types of one-dimensional elements are derived in terms of the mesh size and the
material properties of both mechanics and seepage. Numerical examples are simulated to illustrate the obtained
theoretical results.

1. Introduction

The theory of poromechanics, originally developed by Biot [1,2]
and later generalized by many others, describes the interaction (or
coupling) between the deformation and the fluid flow in a fluid-satu-
rated porous medium. Biot’s model is still widely used today in a great
variety of fields, ranging from geomechanics and petroleum en-
gineering ever since its establishment, to biomechanics [3] or even food
processing [4]. Some examples of applications in engineering fields
include petroleum production, nuclear waste disposal, carbon seques-
tration, soil consolidation, slope stability and hydraulic fracturing, and
so on.

Although some analytical solutions have been derived for a few
linear poroelastic problems [5], numerical simulations (e.g. finite ele-
ment method [6]) seem to be the only way to obtain quantitative results
for real applications. When the finite element method is adopted in
transient analysis, the differential equation describing the problem is
first integrated by a finite element discretization to approximate the
numerical solutions in space. Then a time marching scheme, such as the
well-known θ-method, is employed to approximate the numerical so-
lutions over a time interval.

It is generally believed that decreasing the size of the adopted time
step improves the accuracy of the numerical solutions to transient
problems. However, approximations of the coupled poromechanical
equations by standard finite element methods often exhibit strong
nonphysical oscillations in the pore fluid pressure when time-step size is
very small [7–9]. On the other hand, the oscillations may disappear on

very fine grids, when some stability restrictions between the time and
space discretization parameters are fulfilled [10]. For example, this is
the case when standard linear finite elements or standard quadratic
finite elements are used to approximate both displacement and pressure
unknowns.

A long time back, Sandhu et al. [7] had observed the phenomenon
that standard finite elements did not yield satisfactory solutions when a
very small time-step size was used immediately after application of load
in a consolidation analysis. Based on the analysis of the correlation
among the time-step size, element length and physical parameters,
Vermeer and Verruijt [10] proposed a minimum time-step size for the
one-dimensional consolidation problem of porous media saturated with
an incompressible fluid. The derived stability condition is based on the
observation that the excess pore pressure due to an instantaneous load
applied on a draining porous column cannot exceed the load itself.
These authors used the elements with linear shape functions of pore
pressures and suggested the same expression with a different multiplier
for elements where pore pressures vary quadratically. They concluded
that, to achieve stability, one had to refine the mesh until the minimum
time step constraint was satisfied. From the stability analysis for a
staggered solution, Turska and Schrefler [11,12] also found a lower
limit for the time step in the cases of linear and nonlinear consolida-
tions. Ferranato et al. [13] provided an empirical relation for a lower
bound critical time-step size, below which ill-conditioning might sud-
denly occur. The minimum time-step size they defined is similar to that
of Vermeer and Verruijt’s criterion [10] and it is larger for soft and low
permeable porous media discretized on coarser grids.
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In order to eliminate the nonphysical oscillations in pore fluid
pressure, the approximation spaces satisfying an appropriate inf-sup
condition [14] are commonly introduced. Such discretizations have
been theoretically investigated by Murad et al. [15] However, an inf-
sup stable pair of spaces like the Taylor-Hood elements [16], which
approximates the displacement by continuous piecewise quadratic
functions and the pressure by continuous piecewise linear functions,
does not necessarily provide oscillation-free solutions [17].

Favino et al. [18] extended a strategy in one-dimensional case and
derived the minimum value of the time-step size for the two-dimen-
sional poromechanical problems by employing standard linear and
Taylor-Hood square elements. Differently from the one-dimensional
case, in the two-dimensional case the discrete maximum principle ar-
gument holds true only if the shear modulus of the solid skeleton is
much less than the bulk modulus. More recently, applying the discrete
maximum principle (DMP) [19] and the monotonicity restriction [20]
as used in the heat conduction analysis, Cui et al. [21] had obtained
time-step constraints in one-dimensional cases for linear, quadratic and
Taylor-Hood elements, respectively, in coupled consolidation analysis
and provided some suggestions to handle the numerical oscillation is-
sues.

Although the time-step constraints for the finite element analysis of
poromechanical problems have been established to a certain extent,
most of the work is applicable to incompressible porous media only.
The more general problems of fluid-saturated poroelastic media with
compressible constituents have not been well addressed. On the other
hand, the analysis of transient heat conduction shows that the lower
bound of time-step size may disappear when the mass lumping tech-
niques are employed in the transient context [22]. For the coupled
poromechanical problems, however, the influence of mass lumping on
the numerical stability remains unclear.

The objective of this paper is two-folded, i.e., to explore the me-
chanisms behind the nonphysical oscillations in the finite element so-
lution of poromechanical problems, and to derive the minimum time-
step sizes for the onset of spatial oscillations of pore fluid pressure. To
these ends, both consistent and lumped Galerkin finite element schemes
and different combinations of displacement and pore pressure shape
functions are considered for one-dimensional problems. Although one-
dimensional solutions are less applicable to practical scenarios, further
research on them is still required, especially for higher-order elements
in coupled analyses. Also, thorough understanding of the analytical
approach for one-dimensional cases is necessary for the investigation of
multidimensional problems. The latter was found to be much more
difficult with complex geometries, various finite elements and
changeable boundary conditions [23], whose critical time step might
not be obtained analytically but had to be determined by trial and error
[24], and therefore are not included here.

The paper is organized as follows. In Section 2, the mathematical
model for the poromechanical problem is formulated and the finite
element formulation with the generalized θ-method of time integration
schemes is introduced. In Section 3, a criterion for numerical instability
is established, and the existence of spatial oscillations at small time
steps is shown. The non-oscillatory criteria are employed to derive
minimum time-step sizes for the onset of the spatial oscillations, and to
remove the instabilities from time-integration schemes. Some numer-
ical examples are introduced to justify the theoretical arguments in
Section 4.

2. Transient finite element formulation for poromechanical model

2.1. Governing equations

A detailed derivation of the coupled poromechanical equations can
be found in Coussy’s monograph [25]. Consider a porous medium
composed of a solid matrix (s) saturated by a fluid (w). The porous
medium has a porosity of ϕ, and its mass density, ρ, is given by

= + −ρ ϕρ ϕ ρ(1 ) ,w s where ρs and ρw are the intrinsic mass densities of
the solid and the fluid, respectively. Let u be the displacement of the
solid skeleton and p the pore fluid pressure (positive for compression).
Assume that the skeletal deformation is infinitesimal and linear elastic
and the fluid seepage velocity satisfies the Darcy’s law. Under quasi-
static conditions, the one-dimensional coupled formulations can then be
written as
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where x is the spatial coordinate, t the time, g the gravity acceleration, k
the intrinsic permeability and μ the dynamic viscosity of the pore fluid.
D is the constrained modulus, i.e., = +D K G4 /3, with K being the bulk
modulus and G the shear modulus. α and M represent Biot’s coefficient
and Biot’s modulus, respectively, which depend on the compressibility
of the materials, namely,
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where K is the bulk modulus of the dry porous material; Ks and Kw are
the bulk moduli of the solid phase and the fluid phase, respectively. It is
worth mentioning that Biot’s modulus is the inverse of the storage
coefficient well known in groundwater applications [26], playing a
significant role in the field of compressible fluid flow.

The saturated porous medium is assumed to occupy a space domain
Ω with a boundary Γ. The initial conditions at t=0 can be specified as

= =u u p p, (in Ω).0 0 (5)

The boundary conditions include
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where ̂u , ̂p , ̂t and ̂w are the specified displacement, fluid pressure,
traction and flux on the boundaries Γ ,u Γ ,p Γσ and Γ ,ω respectively. Γu and
Γσ are the non-overlapping portions of the boundary Γ, so as Γp and Γω.

2.2. Spatial domain discretization

The standard Galerkin method is employed to develop the finite
element formulation for the coupled poromechanical problem pre-
sented above. The skeletal displacement, u, and the pore fluid pressure,
p, are chosen as the primary unknown variables. Let Nu and Np be the
shape function matrices for displacement and fluid pressure, respec-
tively, and U and P are the corresponding vectors of unknowns. After
discretizing the weak form of the linear partial differential Eqs. (1) and
(2) in the spatial domain, one obtains the following set of fully coupled
algebraic equations,
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where the matrices and vectors can be expressed as follows:
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