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A B S T R A C T

Growing interest in hydraulic fracturing (HF) using super-critical CO2 (SC-CO2) calls into question the typical HF
modeling assumption whereby the fluid compressibility is neglected. This paper models a plane strain HF driven
by compressible fracturing fluid including the influence of viscous fluid flow, crack propagation through the host
rock, and fluid leakoff into the host rock. The results show that, contrary to a reasonable initial hypothesis that
compressibility would be important, in expected real world conditions the fluid compressibility has little impact
on fracture propagation.

1. Introduction

Hydraulic fracturing technology was developed during the last half
of the 1940s and rapidly became one of the most important technolo-
gies for oil and gas well stimulation [10,21]. The importance has fur-
ther increased in the past two decades due to its enabling of the dra-
matic growth in development of unconventional (very low
permeability) reservoirs. Over its 70 year history, many approaches
have been taken to model hydraulic fracture growth. But, motivated by
a recent rise of interest in super-critical CO2 (SC-CO2) fracturing, the
assumption of zero compressibility must be revisited. For this, we draw
inspiration from past investigations, including Nilson [22,24] who first
focused the one-dimensional compressible gas flowing and fracturing
problem in which the gas was treated as an ideal gas and the ideal gas
law was adopted to describe the gas state. Friehauf and Sharma [11]
and Ribeiro and Sharma [26] considered the temperature and pressure
influence and proposed a 2D and 3D model, respectively, for hydraulic
fracturing with energized fluids. Other authors consider compressibility
only in the injection system [1,17,20].

While there exist simulators that include compressibility, and while
the impact of compressibility in the injection system is clear, it remains
unclear how strong is the impact of compressibility on the system when
considered via the fluid mass balance (continuity) equation. Our recent
work [29] has shown that the impact on toughness dominated hy-
draulic fractures (internal pressure is approximately uniform) is small,
around 10% at most, in the storage regime and completely negligible in
the leakoff dominated regime, with similar results arising for both plane
strain and penny-shaped hydraulic fractures. However, it remains to

clarify the importance of compressibility for hydraulic fractures
wherein viscous flow is not negligible. Thus motivated, this Note pre-
sents development of a numerical solution for plane strain hydraulic
fracture propagation driven by a viscous, compressible fluid in a
permeable rock.

2. Model

The model considers a straight, plane strain hydraulic fracture (HF)
characterized by the fracture half-length, l t( ), and aperture, w x t( , ),
where x is the spatial coordinate (Fig. 1). The compressible fluid is
injected at a constant rate,Q0, to drive the fracture through a permeable
rock. The pressure inside the fracture, p x t( , )f , is the sum of the net
pressure, p x t( , ), associated with driving HF growth and the minimum
in-situ stress, σ0. The fluid flux inside the fracture is expressed by
q= uw, where u is the mean fluid velocity across the fracture width, w.

State equation. With a view of fracturing fluid compressibility, we
assume the compressible fluid follows a linear relationship between
density and net pressure. By this means, the compressibility is taken
into account by

= +ρ Cp ρ0 (1)

where C represents compressibility and ρ0 is the density when fluid
pressure is equivalent to the minimum horizontal in-situ stress. Such an
assumption of local linearity is valid for typically-expected reservoir
temperature-pressure conditions and for net pressure that does not vary
too widely compared to a pressure datum that can be taken as the
minimum in situ stress σ0. Such local linearity is illustrated in Fig. 2
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based on the pressure-density curves obtained by Span and Wagner
[28]. Hence, the compressibility C is the slope of state curve in Fig. 2.
Moreover, in experimental conditions, even though the pressure and
temperature are lower than under reservoir conditions, the pressure
and temperature of SC-CO2 are still larger than 7.38MPa and 304.1 K
(Super-critical condition of CO2). Therefore, in Fig. 2, the largest C
ranges from 143 to 175 kg/(m3MPa).

Continuity equation. The mass pumped into the fracture must be
conserved; therefore a mass balance equation for a plane strain fracture
driven by a compressible fluid is given by
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Here the first term is a local storage term associated with change in HF
width, the second term is the divergence of the mass flux, and the third
term represents leakoff according to Carter [4]. This approach treats the
leakage of fracturing fluid into the surrounding rock as a one-dimen-
sional diffusion process under the assumptions that the HF propagation
velocity far exceeds the characteristic diffusion velocity and that the net
pressure is much smaller than the minimum in situ stress. In this
manner, Carter leakoff gives the fluid loss rate in terms of t x( )0 , which is

the time when the fluid front reaches x, and a lumped fluid loss coef-
ficient, CL, which can include impacts of rock permeability, fluid visc-
osity, filter cake building, and so forth. Upon substitution of the com-
pressibility law from Eq. (1), the mass balance equation becomes
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Fluid flow equation. The compressible one dimensional fluid flow
within the fracture is expressed as [22,23]
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where u is the mean fluid longitudinal (x) velocity and λ is the viscous
shear stress. In this paper, only the laminar regime is considered
wherein Reynolds number satisfies the laminar flow condition,

<Re 2000, with a suitable characteristic value computed from
=Re ρuw μ/ [24,32]. For laminar flow, =λ μu ρw12 / 2, and recall that

Nomenclature

l hydraulic fracture length
p fluid net pressure
pf fluid pressure
q fluid flux (per unit fracture height)
t time

∗t characteristic time scale associated with the storage-
leakoff transition

t x( )0 the time when the fluid front reaches x
tΔ time step

u mean fluid velocity
w hydraulic fracture opening
wk tip asymptotic for toughness regime propagation
wm tip asymptotic for viscosity storage regime propagation

∼wm tip asymptotic for viscosity leakoff regime propagation
x spatial coordinate in longitudinal direction
C fluid compressibility
CL leakoff coefficient ′ =C C( 2 )L

Dn normal displacement
Ds shear displacement
E Young’s modulus of the rock

′E plane strain elastic modulus of the rock
Gnn normal stress influence coefficient caused by normal

displacement
Gns normal stress influence coefficient caused by shear dis-

placement
Gsn shear stress influence coefficient caused by normal dis-

placement
Gss shear stress influence coefficient caused by shear dis-

placement
KI stress intensity factor (mode I)
KIc fracture toughness of the rock (mode I, ′ =K π K4 2/ Ic)
Q0 fluid flow from pump into the wellbore
V fracture propagation velocity
βm coefficient used in tip asymptotic for viscosity storage re-

gime propagation
∼βm coefficient used in tip asymptotic for viscosity leakoff re-

gime propagation
γ dimensionless length of fracture
K dimensionless toughness
λ viscous shear stress
μ fluid viscosity ′ =μ μ( 12 )
v Poisson’s ratio of the rock
ρ fluid density
ρ0 fluid density when pressure equals minimum in-situ stress
σ0 minimum horizontal in-situ stress
τ dimensionless time

Fig. 1. Geometry of the KGD (plane strain) hydraulic fracture (after Bunger et al. [3]).
Fig. 2. The relationship between SC-CO2 density and pressure (after Span and Wagner
[28]).
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