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a b s t r a c t

A model for unifying a viscoelastic fluid and a Newtonian fluid is established, in which the governing
equations for the viscoelastic fluid and the Newtonian fluid are successfully united into a system of
generalized Navier–Stokes equations. A level set method is set up to solve the model for capturing the
moving interface in the mold filling process. The physical governing equations are solved by the finite
volume method on a non-staggered grid and the interpolation technique on the collocated grid is used for
the pressure-velocity and the stress-velocity decoupling problems. The level set and its reinitialization
equation are solved by the finite difference method, in which the spatial derivatives are discretized by
the 5th-order Weighted Essentially Non-Oscillatory (WENO) scheme, and the temporal derivatives are
discretized by the 3rd-order Total Variation Diminishing Runge–Kutta (TVD-R–K) scheme. The validity of
the method is verified by some benchmark problems. Then a simulation of viscoelastic fluid mold filling
process is pursued with the method. The moving interface and all the information of the physical quanti-
ties during the injection process are captured. The die swelling phenomenon is found in the simulation.
The influences of elasticity and viscosity on the physical quantities such as stresses etc. in the mold fill-
ing process are analyzed. Numerical results show that elastic characteristics such as the stretch and die
swelling etc. reinforce accordingly as Weissenberg number increases. Pressures increase continuously in
the mold filling process and the pressure maintains the maximum value at the inlet. Injection velocity is
proportional to injection pressure. A higher viscosity leads to a higher pressure distribution, that is, the
pressure decreases as Reynolds number increases.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Fluid flows of viscoelastic materials, such as polymer melts in
mold filling process, are frequently used in industrial production
and often involve multiple moving free surfaces. Many numeri-
cal techniques for simulating viscoelastic free surface flows have
been developed. Keunings and co-workers did some early stud-
ies on viscoelastic two-dimensional free surface flows in 1980s
[5,6,13,14]. Tomé and co-workers did many studies on simulations
of viscoelastic free surface flows in 2D [33–35] and 3D [31,32,36],
using finite difference methods on staggered grids and Marker-and-
Cell method. Picasso and co-workers presented a numerical model
for the simulation of viscoelastic flows with complex free surfaces
in 3D [4,10]. Eriksson et al. studied the effects of polymer melt rhe-
ology on the replication of surface microstructures in isothermal
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molding [8]. Rasmussen and Eriksson also did some experiments
and viscoelastic simulations of gas displacement of polymer melts
in a cylinder [19].

The papers mentioned above considered only the viscoelas-
tic fluid phase and the constitutive equations adopted are UCM,
Oldroyd-B or PTT etc., which are developed based on phenomeno-
logical theory. The extended pom–pom (XPP) constitutive equation
developed by Verbeeten et al. [37,38] is based on molecular theory
of rheology and can provide a good fitting to the rheology of poly-
mer melts and concentrated solutions. Moreover, the XPP model
reduces the influences of stress singularity to some extent that
Weissenberg numbers can reach higher values than those in some
models developed based on phenomenological theory. However,
as far as we know, its application to free surface flows has not yet
been demonstrated. There are single equation version and double
equation version of the XPP model. As pointed in [2], the two ver-
sions have been shown to be mathematically equivalent involving
a constitutive equation for the orientation tensor and an evolution
equation for the stretch. In this paper, we use the single equation
version of the XPP (SXPP) model as the constitutive equation since
it is easier to deal with than double equation mode.
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Fig. 1. Schematic plot of level set method.

Moreover, as for the Newtonian fluid, the free surface prob-
lems for two-phase cases have already been studied for many
years [26–29,41], in which the governing equations for two dif-
ferent Newtonian fluid flows can be unified by the definition of
the Heaviside function. This paper tries to do some research on
the free surface problem for the viscoelastic-Newtonian fluid flows
inspired by the Newtonian-Newtonian case. We focus on the mold
filling problem that has been studied with only viscoelastic fluid
phase considered in [4,9,32]. The Level set method proposed by
Osher and Sethian [17] is used to capture the interface. When only
the melt phase in the cavity is considered, one must devise appro-
priate extension velocities, for example, the Ghost Fluid Method
(GFM), to transport the neighboring level set functions in tandem
with the one corresponding to the zero level set because both the
level set function and the velocity field defined at the interface are
defined throughout all of space [21–23]. This paper successfully
unifies the governing equations of the viscoelastic fluid described
by an SXPP constitutive model and those of a Newtonian fluid, and
then the mold filling process is simulated numerically. The motion
of the interface in the mold filling process is captured. The finite
volume method is used to discretize the governing equations on a
non-staggered grid. The level set equation and the reinitialization
equation are spacial discretized by 5th-order Weighted Essentially
Non-Oscillatory (WENO) scheme and temporal discretized by Total
Variation Diminishing Runge–Kutta (TVD-R–K) method. The influ-
ences of physical quantities, such as the Reynolds number and the
Weissenberg number, on the interface motion are studied. The
influences of the viscosity and the elasticity on the first normal-
stress difference and the stretch are discussed. The relationship
between the viscosity and the injection pressure under different
flow rates are discussed as well.

2. Level set method

Assume that two sub-domains �1 and �2of the domain � are
filled with two different fluids which is shown in Fig. 1.

To describe the interface � between the two sub-domains, we
use the level set method, which is based upon an implicit represen-
tation of the interface � by a smooth, scalar function ϕ called the
level set function. The function usually takes the form of a signed
distance to the interface, whereby the zero level setϕ = 0 represents
the points x(x = (x, y)) on the actual interface �. And ϕ satisfies the
following formula [16].

ϕ(x, t) =
{

distance (x,�(t)) x ∈�1(t)
0 x ∈�(t)
− distance(x,�(t)) x ∈�2(t)

(1)

And the interface can be written as follows [16]

�(t) = {x ∈�|ϕ(x, t) = 0} (2)

Then the interface is evolved by the velocity (u, v). It can be
described by the advection equation in the Eulerian coordinate [16].

∂ϕ

∂t
+ u · ∇ϕ = 0 (3)

A high velocity gradient can produce wide spreading and
stretching of the level sets when the level set method is developed,
which leads to the result that ϕ will no longer remain a distance
function after one or more time steps. A reinitialization algorithm
must be applied to keep ϕ as the algebraic distance to the interface.
The algorithm is based on the iterative solution of the following
initial value problem [16].{
∂ϕ

∂tr
= sign(ϕ0)(1 − |∇ϕ|)

ϕ(x, y,0) = ϕ0(x, y)
(4)

where tr is a pseudo time and sign(ϕ0) is the sign function of ϕ
which is defined as

sign(ϕ0) = ϕ0√
ϕ0

2 + [min(�x,�y)]2

Here, �x and �y are the grid widths along x and y direction
respectively, and [min(�x, �y)]2 is used to avoid denominator’s
dividing by zero.

Reinitialization equation (4) does not change the position of the
zero level set of ϕ. Unfortunately in numerical computation this
may not be true [26]. We use the method presented by Sussman
et al. [26] to improve the accuracy of solving the reinitialization
equation. A local correction item, ωıε(ϕ)|�ϕ|, is added to the reini-
tialization equation. The revised reinitialization equation can be
described as

∂ϕ

∂tr
+ sign(ϕ0)(|∇ϕ| − 1) = ωıε(ϕ)|∇ϕ| (5)

whereω is the weight coefficient, ıε(ϕ) is the Dirac function defined
in (18). See [26] for more details.

3. A unified model for viscoelastic-Newtonian fluid flows

In this section, the unified model for voscoelastic-Newtonian
fluid flows will discuss in detail.

In mold filling process, since the gas phase and the liquid-phase
are immiscible and the Mach number of the gas is very small, both
the gas phase and the liquid-phase can be regarded as incompress-
ible flows.

The governing equations for the gas phase in the cavity are

continuity
∂u

∂x
+ ∂v
∂y

= 0 (6)

u-momentum
∂(
gu)
∂t

+ ∂(
guu)
∂x

+ ∂(
gvu)
∂y

= −∂pg
∂x

+ ∂2(�gu)
∂x2

+ ∂2(�gu)
∂y2

(7)

v-momentum
∂(
gv)
∂t

+ ∂(
guv)
∂x

+ ∂(
gvv)
∂y

= −∂pg
∂y

+ ∂2(�gv)
∂x2

+ ∂2(�gv)
∂y2

(8)

where u, v are the velocities along x, y directions respectively, 
 is
the density, � is the viscosity and the subscript g denotes the gas
phase.

The continuity equation for the viscoelastic flow with SXPP con-
stitutive model is the same as Eq. (6). The momentum equations
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