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a b s t r a c t

We present an analytically derived model for flow induced crystallization (FIC), based upon the recent
Graham–Olmsted simulation. We use combinatorial techniques to calculate nucleation energy land-
scapes, which correctly predict simulation data. Applying both the analytic calculation and the simulation,
we put forward a simple expression relating nucleation rate to polymer chain stretch. We also investi-
gate bimodal blends, an important step to understanding polydisperse systems and eventually modeling
industrial polymer melts.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The long chain nature of polymer molecules strongly affects
their flow properties and crystallization. Semi-crystalline polymers
comprise the largest group of commercially useful polymers, and
when crystallized they are composed of amorphous or uncrystal-
lized regions combined with crystallites. Crystallites are ordered
sections of the semi-crystalline polymer where chains are closely
packed and aligned. The amount and arrangement of crystalline
material is a key part of the morphology of a semi-crystalline poly-
mer. The morphology has a strong effect on the toughness, strength,
permeability and other physical properties of the resulting plas-
tic.

It is widely established that flow significantly increases the poly-
mer crystallization rate, by increasing the density of nuclei [1–5].
This effect is known as flow induced crystallization (FIC), and is of
both scientific and industrial importance. The formation of elon-
gated nuclei-shaped like shish-kebabs is one of the more curious
effects, the shish-kebab-shaped nuclei have a strong effect on the
strength of a material [1,3,6–8]. Quantitative models for FIC are
beginning to emerge [9,10]. These offer the possibility of control-
ling the properties of polymer products by altering the processing
conditions. In recent experiments the most dramatic effects of FIC
happen at low undercooling [3–8], that is, temperatures around the
melting point. Nucleation is rare at low undercooling; this makes
molecular dynamics prohibitively expensive and means that even
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kinetic Monte Carlo simulations are costly. Thus analytic theory has
an important role to play in this temperature regime.

1.1. Nucleation

Polymer crystallization proceeds by nucleation and growth.
Nucleation in polymers often is very slow because of the large free
energy barrier to nucleation. The free energy of a crystal nucleus
is a balance between the energy gained by the bulk volume and
the surface energy cost. Hence small nuclei are unfavourable due
to their relatively high surface energy costs. However, large nuclei
are favourable because the bulk volume eventually dominates. The
process of nucleation begins when a few monomers bond together.
Such bonds are unfavourable due to the high cost of the solid–liquid
interface and so they are subsequently very likely to break. How-
ever, if enough unfavourable events occur in sequence, a stable
crystal is eventually formed. Once this nucleus is large enough,
adding to it becomes favourable and spontaneous growth occurs.
In this paper we focus on the process of reaching such a critical size.

Applying a flow to polymer chains has a significant effect on
nucleation. Flow stretches the chains, lowering the chain entropy.
This lowers the entropic cost of monomer attachment, increasing
the thermodynamic driving force for crystallization and leading to
faster nucleation.

1.2. GLaMM model

The Graham, Likhtman and Milner, McLeish (GLaMM) model
is based upon the tube model, in which polymer chains are con-
fined by neighbouring chains to a tube-like region and models fast
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Fig. 1. Diagram of space curve R(s; t) which describes the movement of a polymer
chain; an entanglement segment is shown by ri .

flows of entangled polymers [11]. It models the chain configura-
tion under flow, down to the length scale of the tube diameter and
has been extensively tested against experimental data for flow of
amorphous polymers. It accurately predicts both stresses [11–13]
and neutron scattering [14–16] from polymers under strong flow.
All chains are considered to have the same molecular weight, i.e. a
monodisperse distribution. A chain is divided into Z entanglement
segments, each containing Ne Kuhn steps or monomers (here we
use Ne = 100 throughout). Chain configurations are described by a
continuous time-dependent space curve R(s; t), where R denotes
the monomer spatial position and s ∈ (0, Z) is the monomer label,
normalised by Ne, at time t, as shown in Fig. 1. Note that ∂R(s; t)/∂s
is a tangent to the polymer chain at position, s. Hence R(s; t) leads
to the following continuous tube tangent correlation function:

f(s, s′; t) =
〈

∂R(s; t)
∂s

∂R(s′; t)
∂s′

〉
. (1)

A partial differential equation (PDE) is derived for f(s, s′; t) from the
relaxation mechanisms in the tube model, see [11]. In solving this
PDE, f is described discretely in s with the indices i and j, the chain
is subdivided into Z entanglement segments each containing Ne

monomers, with f given by fij(t) = f(i, j; t). For FIC, we are concerned
with only the local tangent vector correlation function, i.e. i = j:

fii(t) =
〈

∂R(s; t)
∂s

∣∣∣∣
s=i

∂R(s′; t)
∂s′

∣∣∣∣
s′=i

〉
≈
〈

�R(i; t)
�i

�R(i; t)
�i

〉
.

For a single entanglement segment we have �i = 1 and �R = r is
the end-to-end vector of an entanglement segment. We refer to
fii(t) as fi(t) = 〈rr〉 (i; t) from here on.

The GLaMM model computes fi(t) in a transient flow, providing
the time-dependent stretch and orientation for each entanglement
segment under flow. Deformation induced by flow modifies the
free energy of a segment which affects the nucleation kinetics. At a
time t, we have fi(t) = 〈rr〉 (i; t) where each integer i from zero to Z
labels the entanglement segment number. A free energy is used to
derive the dynamics of the model, based on the statistics of random
walks. Gradients in this free energy drive chain retraction and influ-
ence constraint release. Based on the same statistics, the elastic free
energy change on stretching, �Fel

i
is derived for each entanglement

segment subject to a constraint on its average end-to-end vector.
This derivation is detailed in the appendix of Ref. [9].

�Fel
i = 1

2
Tr fi − 1

2
Tr ln fi − Ne ln

(
1 − Tr fi

Ne

)
for i = 0, . . . , Z. (2)

The length of a particular segment, i, is
√〈

r2
i

〉
=
√

Tr fi. This pro-

vides the dominant contribution to �Fel
i

through the first and third

terms in Eq. (2), but the orientation also contributes. If entangle-
ment segments have different elastic free energy values �Fel

i
, then

they are considered to be different species. Later, the total stretch
ratio for the whole chain will be useful; which is given by the root
mean square chain length normalised by its equilibrium value:

� = 1
Z

Z∑
i=1

√〈
r2

i

〉
. (3)

The tube model predicts that a large increase in relaxation times
occurs around the length scale of the tube diameter. Thus smallest
length scale required in the GLaMM model is the tube diameter or
primitive path segment. All length scales below this are in equilib-
rium (with respect to the constraint imposed by deformation on
longer length scales). However, nucleation occurs on the Kuhn step
or “monomer” level. Nevertheless the monomer statistics can be
calculated from the GLaMM model by assuming that monomers
are in equilibrium with respect to the slow entangled dynamics.
This crossover in timescales occurs at Rouse time of an entangle-
ment segment, �e, and from here on all deformation rates will be
expressed in terms of �e.

1.3. Kinetic Monte Carlo simulation of polymer nucleation

Stochastic simulation of nucleation is difficult because it is
intrinsically a rare event. To ease this, the kinetic Monte Carlo Sim-
ulations of Graham and Olmsted use a variable step method [9,10].
This method suits nucleation, particularly with high barriers, since
large timesteps are taken when nuclei are small, but for the rare
occasions when we have larger nuclei, a more refined time resolu-
tion is employed. Nevertheless these simulations are still expensive
for low undercooling when the free energy barrier to nucleation is
especially high. In this work we derive an analytic framework to
predict and extend the results given by these simulations.

Here we present a brief outline of the simulation algorithm
of Graham and Olmsted, see [9,10] for full details. The simula-
tion describes each nucleus as a list of NS stems each containing
a number of monomers, with the total number of monomers being
NT . Nuclei are composed of monomers represented by Kuhn seg-
ments of dimension bl × bw × bw . It is assumed that NT , NS define
a spheroid independent of the arrangement of monomers on the
stems. Therefore NT and NS fix the volume and surface area and
hence define the free energy. To compute the free energy landscape
of nucleation for a single species we need the free energy of each
individual crystal F∗(NT , NS) with NT total monomers on NS stems.
F∗(NT , NS) is a balance between the bulk energy reduction and the
surface area cost, defined by

F∗(NT , NS) = −E∗
0NT + �∗

SS(NT , NS), (4)

where E∗
0 is the dimensional bulk energy reduction of adding one

monomer, �∗
S is the dimensional surface energy cost per unit area,

and where S is the surface area of the spheroid. We nondimension-
alise parameters as F = F∗/kBT , E0 = blb

2
wE∗

0/kBT , �S = b2
w�∗

S/kBT

and S = b2
wS̃. For a prolate spheroid we have

S̃(NT , NS) = 2NS + 2ar
NT

�p

√
NS

arcsin �p, �p =

√
1 − N3

S

a2
r N2

T

. (5a)

For an oblate spheroid we have:

S̃(NT , NS) = 2NS + a2
r

N2
T

�oN2
S

ln
(

1 + �o

1 − �o

)
, �o =

√
1 − a2

r N2
T

N3
S

, (5b)

where ar = 3
√

�bl/4bw is a dimensionless prefactor. From here on
all free energies will be expressed in units of kBT and we take bl = bw

throughout.
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