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A B S T R A C T

A general closed-form solution to compute the reliability index of a simple limit state function with two load
terms and one resistance term is derived. The formulation considers contributions to margins of safety expressed
in probabilistic terms due to the choice of load and resistance models, bias values, dependencies between
nominal values and bias, uncertainty in estimates of nominal values for uncorrelated load and resistance terms at
time of design, and average margin of safety expressed as the operational factor of safety. A sensitivity analysis
and example application demonstrate the quantitative influence of the contributing random variables on re-
liability index.

1. Introduction

In this paper we focus on a particular class of simple linear limit
state functions with two load terms and one resistance term. This paper
continues the work of Bathurst and Javankhoshdel [1] who restricted
their study to the case of one resistance term and only one load term
and developed a closed-form solution for the reliability index for per-
formance functions of this type. The motivation for the work is relia-
bility-based design of geotechnical soil and soil-structure problems
using limit state (performance) functions that have uncertainty due to
the accuracy of the underlying equations that appear in a limit state
equation, accuracy of the calibration of limit state equations that have
an empirical component, and variability in the selection of nominal
values at time of design. Performance functions of this type are common
in geotechnical soil-structure interaction problems (e.g. [2–4]). Some
examples are pullout and rupture limit states in mechanically stabilized
earth (MSE) walls [5,6], soil nail walls [7] and compression piles [8].
For MSE walls and soil nail walls the first load contribution is the
permanent load due to soil self-weight and the second load is the result
of a permanent surface load (such as a footing), or possibly additional
load due to an extreme event such as earthquake. For compression
piles, the first load term would be associated with structure dead loads
and the second could be due to sustained live loads [9].

2. Objective and scope

The key objective in the current study is the derivation of a general
expression for reliability index (β) that captures quantitatively the ac-
curacy of the underlying load and resistance equations that appear in a
simple limit state function (called method error or bias) and uncertainty
in the choice of nominal input values used at design time. The former is
the combined effect of underlying model error, or model bias, and
uncertainty in the back-fitting of coefficient terms that may be present
in the models at the time of model calibration.

The load and resistance terms in the current and earlier study [1]
are uncorrelated but both include random variables that capture
method bias in the estimate of the nominal resistance value and bias in
each nominal load contribution. Method bias is computed as the ratio of
measured (actual) load or resistance value to the corresponding pre-
dicted (nominal) load or resistance value used at the time of design.
Bias values can be understood to be corrections applied to nominal load
and resistance values that are prescribed or calculated using the un-
derlying load and resistance models that appear in the performance
function of interest. These corrections are often necessary to ensure that
margins of safety computed at time of design using nominal load and
resistance values are better estimates of the actual margins of safety for
the soil-structure limit state under operational conditions. This cor-
rection is often not required in structural engineering limit state designs
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but is often necessary using geotechnical soil-structure limit state per-
formance functions which have larger sources of uncertainty.

The paper includes sensitivity analyses that demonstrate the quan-
titative influence of limit state function accuracy (mean and spread of
bias values), dependencies (cross-correlations between bias values and
predicted (nominal) load and resistance values), cross-correlations be-
tween nominal loads and resistance, and average margin of safety
(defined as the operational factor of safety) on computed reliability.
The accuracy of the closed-form solution is compared to results using
the Monte Carlo method which is more general.

The uncertainty in nominal load and resistance values at time of
design is linked to quantities that capture the level of understanding
(confidence) associated with the choice of nominal load and resistance
values based on load and resistance factor design (LRFD) practice for
geotechnical foundations in Canada [10,11].

An advantage of the closed-form solution for the conditions de-
scribed in this paper, is that the influence of uncertainty in nominal
values, bias statistics and cross-correlations on the magnitude of relia-
bility index, is transparent and easily explored using a spreadsheet.

3. Formulation of limit state functions with one resistance term
and two load terms

Many limit state functions in geotechnical soil and soil-structure
problems can be expressed by simple equations of the form

= −g R Qm m (1)

Here g is a random variable representing the margin of safety, and Rm

and Qm are random uncorrelated measured (actual) resistance and sum
of two measured load contributions, respectively. Measured values are
used in this expression because the objective of this paper is to express
the margin of safety as an estimate of the actual (or true) probability of
failure, or equivalently, the reliability index (β). The equivalent per-
formance function with g redefined as g/Qm is

= −g R /Q 1m m (2)

where Rm/Qm is the true (actual) factor of safety. Measured resistance
and load values are related to nominal resistance value (Rn) and nom-
inal load values (Qn1 and Qn2) through resistance bias (λR) and load
bias values (λQn1 and λQn2), respectively, as follows

=R λ Rm R n (3a)

= +Q λ Q λ Qm Qn1 n1 Qn2 n2 (3b)

Substituting Eqs. (3a) and (3b) into Eq. (2) gives

⎜ ⎟= ⎛
⎝ +

⎞
⎠

−g λ R
λ Q λ Q

1R n

Qn1 n1 Qn2 n2 (4)

Assuming all variables on the right side of Eq. (4) are random dis-
tributed, then the probability of failure [Pf = P(g < 0)] may be
computed using Monte Carlo simulation provided statistical quantities
describing the mean and spread of each distribution are known. The
probability of failure using Monte Carlo simulation is simply the
number of times g < 0 in a large number of trials.

Soil-structure interaction limit states in geotechnical engineering
with no method bias are an unlikely occurrence, particularly for soil-
structure interaction problems identified earlier. The situation is further
complicated when bias values are not available which is the typical
case. Fortunately, there are some soil-structure interaction problems for
which bias values are available. For example, dead load bias values
from instrumented reinforcement layers in mechanically stabilized
earth (MSE) walls due to permanent soil self-weight have been reported
by Allen and Bathurst [12] and for soil nails by Lin et al. [13]. Re-
sistance-side bias values for compression piles have been reported by
Paikowsky [8] and Allen [2,14]; for the ultimate pullout limit state in
MSE walls by Huang and Bathurst [15], Huang et al. [16], Yu and
Bathurst [17] and Miyata et al. [30]; and for soil nail pullout by Lin
et al. [18].

4. Reliability index β

The probability of failure [Pf = P(g < 0)] for performance function
g (Eq. (2)) is

< = < = −P( g 0) P(R /Q 1) 1 Φ(β)m m (5)

Here, β is reliability index and Φ is the standard normal cumulative
distribution function (NORMSDIST in Excel). Assuming lognormal dis-
tributed random variables then

⎜ ⎟= ⎛
⎝

⎞
⎠

β
μ
σ

ln(R /Q )

ln(R /Q )

m m

m m (6)

The numerator and denominator are the mean and standard de-
viation of the lognormal of the variable computed as (Rm/Qm), re-
spectively. Derivations presented in the Supplementary Material to this
paper lead to a general expression for β which is the reference case 1 in
this study as shown below. This equation falls into the category of first-
order second-moment type (FOSM) in the reliability-based design lit-
erature (e.g. [9]).

Case 1. The general expression for reliability index β is

Nomenclature

β reliability index (–)
COV coefficient of variation (–)
COVλR coefficient of variation of resistance method bias (–)
COVRn coefficient of variation of nominal resistance (–)
COVλQn1 coefficient of variation of load 1 method bias (–)
COVλQn2 coefficient of variation of load 2 method bias (–)
COVQn1 coefficient of variation of nominal load 1 (–)
COVQn2 coefficient of variation of nominal load 2 (–)
COVQm coefficient of variation of sum of measured loads (–)
Φ standard normal cumulative distribution function (–)
μλR mean of bias resistance (–)
μRn mean of nominal resistance (Rn)
μλQn1 mean of load 1 bias (–)
μλQn2 mean of load 2 bias (–)
μ ,μQ Qn1 n mean of nominal load 1 (Qn1)
μQn2 mean of nominal load 2 (Qn2)

μQm mean of measured load
Pf probability of failure (–)
Rm measured resistance
Rn nominal resistance
Qm measured load
Qn1 nominal load 1
Qn2 nominal load 2
ρ cross-correlation coefficient (–)
ρR cross-correlation coefficient between nominal resistance

and method bias (–)
ρQn1 cross-correlation coefficient between nominal and method

bias of load 1 (–)
ρQn2 cross-correlation coefficient between nominal and method

bias of load 2 (–)
σλQn1 standard deviation of load 1 bias
σλQn2 standard deviation of load 2 bias
σQn1 standard deviation of nominal load 1
σQn2 standard deviation of nominal load 2
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