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A B S T R A C T

This study investigates the stability of dual horseshoe-shaped tunnels in cohesive-frictional soils subjected to
gravity using an upper-bound finite element method combined with a plastic-dissipation-based mesh adaptive
strategy. The results are presented in the form of dimensionless stability numbers, which decrease with C/D and
increase with ϕ. The results indicate that the interaction between dual horseshoe-shaped tunnels disappears
when their dimensionless center-to-center distance S/D lies approximately in any of the following ranges for C/
D: (i) 3.5–4.5 for C/D=1, (ii) 3.5–6.5 for C/D=2, (iii) 3.5–9 for C/D=3, (iv) 4–11 for C/D=4, and (v)
4–13.5 for C/D=5.

1. Introduction

Horseshoe-shaped tunnels were initially constructed for applica-
tions such as mining, highway tunnels, and railway tunnels. In modern
times, they have been widely used in city infrastructure and transpor-
tation systems within large cities. In general, given economic and
practical concerns, as well as geological conditions, the use of multiple
tunnels has become a viable option which results in the construction of
tunnels located side by side. However, for relatively low center-to-
center distances, there are non-negligible interactions between these
dual tunnels. The stability of these tunnels is worse than that of single
tunnels, and their collapse mechanisms also differ from that of single
tunnels. Consequently, an accurate assessment of the interactions be-
tween dual tunnels is required.

Numerical methods [1–7] and model testing [8–11] have been used
to analyze the behavior of dual tunnels considering the ground de-
formation that occurs during tunnel construction. However, only a few
studies have focused on the stability of dual tunnels. Limit analysis
methods have proven to be an effective means of determining the sta-
bility of dual tunnels [12–19], as they make it easy to perform the large
amount of calculations associated with collapse mechanisms. Osman
[12] evaluated the undrained stability of unlined dual tunnels by su-
perimposing the continuous plastic deformation mechanism from each
tunnel. Sahoo and Kumar [13] investigated the variation of stability
number and nodal velocity pattern for dual unlined circular tunnels
under the influence of gravity. Yamamoto et al. [14,15] presented the
upper- and lower-bound solutions for dual unsupported tunnels affected

by surcharge loads. Subsequently, Wilson et al. [16,17] obtained upper-
and lower-bound estimates for the undrained stability of dual tunnels.
Yang et al. [18] and Yang et al. [19] analyzed the collapse mechanisms
of dual tunnels subjected to gravity.

While previous studies mainly analyzed the stability of dual circular
tunnels and dual square tunnels, in this paper, the upper-bound finite
element method (UBFEM) is used to investigate the stability of dual
horseshoe-shaped tunnels in soils subjected to gravity. For tunnels in
cohesive-frictional soils, it is difficult to obtain a good failure me-
chanism using relatively few constant strain elements; therefore,
higher-order triangle elements (six-nodal triangle elements) in combi-
nation with a plastic-dissipation-based mesh adaptive strategy are
adopted to improve the accuracy of computations. The stability of dual
horseshoe-shaped tunnels is determined using a dimensionless stability
number that is affected by the dimensionless center-to-center distance
S/D, dimensionless depth C/D, and soil properties. A refined collapse
mechanism that can explicitly reflect slip lines is also presented. Finally,
the results are compared with those previously reported in the litera-
ture.

2. Problem description

In this study, it is assumed that dual unlined tunnels with horseshoe-
shaped cross-sectional profiles are sufficiently long relative to their
dimensions that they can be simplified using the plane strain analysis
model. Because a horseshoe-shaped tunnel has complex curves and the
tunnel geometry has no strict definition, in this paper, the cross-section
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of the horseshoe-shaped tunnel is typified as consisting of a semi-cir-
cular roof and a flat floor, as shown in Fig. 1. Each tunnel has a semi-
circular roof with radius D/2 and a flat floor with height D/2 and span
D. Dual tunnels are aligned horizontally with a center-to-center dis-
tance S and located at a depth C below the surface of the ground. The
soil mass is either modeled as a Tresca material (fully cohesive soils) or
a Mohr-Coulomb material (cohesive-frictional soils) with cohesion c,
internal friction angle ϕ, and unit weight γ. No surcharge loads are
assumed to act on the ground surface, and no lining is placed along the
tunnel boundary. Tunnel collapse is driven only by the action of
gravity, and the stability of dual horseshoe-shaped tunnels can be
conveniently described in terms of a dimensionless stability number (N
= γD/c), which is influenced by C/D, ϕ, and S/D.

Fig. 2 shows the initial finite element meshes for the case with C/
D=2 and S/D=3, and similar mesh patterns are applied in the other
cases. Only the right half of the problem domain is necessary to in-
vestigate this issue because of its symmetry. Note that n1 is the total
number of nodes, and ne is the total number of elements in the domain.
As seen in Fig. 2, the boundary dimensions (L1 and L2) are 2D and 5D,
respectively, and these values increase with tunnel depth. The problem
domain is discretized with six-nodal triangular elements, and the ele-
ment size gradually decreases toward the periphery of the tunnels. Both
the horizontal and vertical velocity components are specified as zero
along the boundaries QM and MN, and the horizontal velocity compo-
nent equals zero along boundary PQ (i.e., the symmetric boundary). No
velocity constraints are applied on the ground surface and along the

tunnel boundary.

3. UBFEM with a mesh adaptive strategy

Inspired by the ideas of compensating for the low order of three-
nodal elements presented by some researchers [20–23], the UBFEM
with higher-order elements (six-nodal elements) is used to analyze the
stability of dual unlined horseshoe-shaped tunnels. In contrast to
second-order cone programming [22], in this paper, upper bound limit
analysis is formulated as a linear programming problem following the
Mohr-Coulomb yield criterion. This requires linearization of the failure
criterion with the polygon that is circumscribed to the yield criterion.
As the strain tensor varies linearly within the six-nodal element, it is
necessary to enforce the flow rule at the three vertices of each element.
To determine the stability of dual horseshoe-shaped tunnels subjected
to gravity, an upper bound on critical weight (γmin) can be obtained by
minimizing the internal power dissipation with respect to the velocity
boundary conditions, flow rule and compatibility requirements.

The linear programming model takes the following form:
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defines the

power dissipated by all the elements, Am represents the area of the mth
element, and p is the total number of sides of the polygon that is used to
linearize the failure criterion. Eqs. (2a)-(2c) define the flow rule within
elements, u v( , )m m( ) ( ) are the velocities of an arbitrary point for the mth
element in the horizontal- and vertical-directions, and x y( , )i i define the
nodal coordinates for the ith vertex. Given the lack of velocity dis-
continuities, each node is shared by the adjacent elements, and the
velocities of the ith vertex for adjacent elements remain the same.
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sponding to the polygon yield criterion for the ith vertex in the mth
element, and λi̇ k

m
, defines the non-negative plastic multiplier rate for the

ith vertex. Eqs. (2e)-(2g) define the constraints of the velocity bound-
aries, where (nm1, nm2, nm3) are the total number of nodes at boundaries
PQ, QM, and MN, and u v( , )b j b j, , define the velocities of nodes along the
boundaries in the horizontal- and vertical-directions. Eq. (2h) is im-
posed to initiate tunnel collapse.

The explanations of the objective function and constraints are si-
milar to those given by Sloan and Kleeman [24] and Makrodimopoulos
and Martin [22].

To obtain upper-bound solutions with good accuracy and plastic
regions with strong identifiability, a plastic-dissipation-based mesh
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Fig. 1. Analysis model for dual horseshoe-shaped tunnels.

Fig. 2. Initial finite element meshes for the case with C/D=2 and S/D=3.
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