
Contents lists available at ScienceDirect

Computers and Geotechnics

journal homepage: www.elsevier.com/locate/compgeo

Research Paper

A high-order local artificial boundary condition for seepage and heat
transfer

Shuang Luo, Erxiang Song⁎

Department of Civil Engineering, Tsinghua University, Beijing 100084, China

A R T I C L E I N F O

Keywords:
Transient seepage
Heat transfer
Unbounded domain
Artificial boundarycondition
High-order approximation

A B S T R A C T

A high-order local artificial boundary condition (ABC) with a new approximation scheme is proposed for nu-
merical analyses of seepage and heat transfer in unbounded domains. The proposed ABCs are first derived for a
one-dimensional case and then extended to high-dimensional cases and transversely isotropic media. In the
derivation, the irrational function in Laplace space with respect to time is approximated through numerical
integration. The calculations show that the proposed ABCs provide more satisfactory results than those obtained
by using existing approximation methods, especially for long-duration simulations. Moreover, the relation
among the calculation accuracy, approximation order, and diffusivity is also investigated.

1. Introduction

Physical problems in many fields, such as transient heat conduction
and transient seepage, involve solving parabolic partial differential
equations (PDEs). Geophysical problems, such as geothermal extrac-
tion, underground water flow and solute transport, all belong to this
category of problems. The geometry of these problems can be regarded
as a domain horizontally extending to infinity. To solve these practical
problems by using numerical methods, the challenge of an infinite
domain must be handled. A direct solution is to build a relatively large
mesh, so that the outer boundary does not influence the entire area of
analysis. However, these computations are inefficient and demand a
high computational capacity. A typical approach is to truncate the in-
finite domain and to properly handle the truncated boundary; then, the
problem can be simulated in a finite domain.

In the past several decades, considerable research was devoted to
the treatment of the infinite domain. The methods proposed mainly
include the infinite element method, artificial boundary method, and
perfect matched layer (PML) method. As the method proposed in this
paper belongs to the category of ABCs, the detailed introduction is
limited to the ABCs. For the infinite element method and PML method,
one can refer to [1,2] and [3,4], respectively.

The basic approach used to establish the ABCs is the determination
of the explicit relationship between the space derivatives of the un-
known variable with its time derivatives and the variable itself at the
truncated boundary. In physics, this relationship provides the heat or
water flux expressed by the unknown temperature or water head, re-
spectively, for the heat conduction problem and seepage problem at the

truncated boundary. The ABCs, according to its expression, can be di-
vided into the global ABCs and the local ABCs. The former is a precise
solution, which is usually expressed in integral form of the unknown
variable or its derivatives of space and time. The current response on
the artificial boundary is usually related to the responses of all previous
time steps in the whole domain. Several representative methods such as
the boundary element method [5,6] and the Dirichlet-to-Neumann
(DtN) method [7,8] belong to this category. Methods of this type are
inefficient to use because of the complicated calculation of the in-
tegrals. In contrast to the global ABC, the local ABC method is much
easier to implement and more efficient to calculate since the local ABC
method involves only the unknown variable and its derivatives at the
time step and at the boundary point of interest. Though the local ABCs
have these advantages, the main concern is their accuracy and nu-
merical stability.

The ABCs have been applied to many kinds of problems. For dy-
namic problems, Lysmer and Kuhlemeyer [9] were recognized as the
first to propose a viscous boundary. Deeks and Randolph [10] devel-
oped a viscous-spring boundary based on the analysis of a radially
travelling wave in an axisymmetric plane. Li and Song [11–14] pro-
posed several types of viscous-spring transmitting boundaries for wave
propagation problems in unbounded, saturated poroelastic media and
studied a three-dimensional numerical analysis for the longitudinal
seismic response of tunnels under an asynchronous wave input by using
the transmitting boundary. Regarding seepage or heat conduction
problems, Han and Huang [15] derived a set of global ABCs for an
axisymmetric heat conduction problem, and Carslaw and Jaeger [16]
derived an integration form of ABCs for a one-dimensional problem. To
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apply these ABCs in a numerical calculation, Wu and Sun [17] estab-
lished a finite differential scheme for one-dimensional global ABCs and
proved that the scheme is unconditionally stable. Zheng [18] also
considered the approximation and stability-related problems for a one-
dimensional heat conduction problem. Chen and Song [19] used the
idea of local ABCs for wave propagation to develop a simple but effi-
cient local artificial boundary for transient seepage problems in an
unbounded domain. Since this local ABC is based on a simple seepage
problem with steady-state boundary conditions, the scope of the ap-
plication is limited and the accuracy of the calculated results for pro-
blems with time-dependent boundary conditions are not quite sa-
tisfactory.

To obtain a more accurate calculation, high-order ABCs are used for
dynamic problems [20] and heat conduction problems [21]. Wu and
Zhang [21] proposed the high-order approximate ABCs for a heat
transfer problem. The basic idea is to use a Laplace integral transfor-
mation and apply a Padé approximation to the variable s corresponding
to time in Laplace space. By using the approximation, the ABCs in La-
place space can be easily inverted into time space, and the explicit
expression of ABCs in time space is established. The accuracy of this
high-order approximation approach mainly depends on the accuracy of
the approximation for the variable s. For a long-duration analysis, a
higher order approximation is needed. Otherwise, the accuracy of the
solution is no longer satisfactory. To ensure a satisfactory solution, even
for very long-duration simulations, a new approximation scheme is
proposed to replace the Padé approximation as used by Wu and Zhang
[21]. By using the new approximation scheme, a new high-order ABC
with a higher accuracy is proposed.

The organization of this paper is as follows. Section 2 presents the
high-order artificial boundary conditions for one-dimensional transient
problems, and the derivation is extended to the multidimensional and
for transversely isotropic media. A stability analysis for the one-di-
mensional case is also conducted. Section 3 focuses on the verification
of the proposed high-order ABC for parabolic equations and demon-
strates its superiority. Section 4 exhibits some numerical examples re-
lated to geothermal exploration, such as heat exchange in a single
fracture, heat exchange in a well doublet system and seepage analysis in
a doublet system, to validate the developed local ABCs. The numerical
simulations are highly accurate and stable. Moreover, a comparative
study is carried out to investigate the influence factors on the accuracy,
especially the approximation order and the value of diffusivity. Com-
putational efficiency-related issues are also discussed in Section 5
through the one-dimensional and two-dimensional cases, which reveal
the advantages of using ABCs. Finally, discussions and conclusions are
given in Section 6.

2. Derivation of the artificial boundary conditions

2.1. One-dimensional time-domain analysis

With reference to Wu and Zhang [21], it is straightforward to es-
tablish the time-domain global ABCs for one-dimensional seepage and
heat transfer problems. For simplicity, a parabolic partial differential
equation in a one-dimensional semi-infinite domain ∈ +∞x [0, ] is first
considered, and the unknown variable u(x, t) is governed by
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For the heat conduction problem, where the unknown variable u is
temperature, a2= κ/(ρc) is the thermal diffusivity, and κ is the thermal
conductivity, ρc can be considered the volumetric heat capacity. For the

transient seepage problem, u is the hydraulic head change, a2= k/Ss is
the hydraulic diffusivity, k is the hydraulic conductivity, and Ss is the
water storage.

Applying the Laplace transformation with respect to t in Eq. (1), we
have
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where the Laplace transformation is defined as
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Eq. (5) has two linearly independent solutions in Laplace space, one
is =∼u e ,x s a
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u is bounded as → +∞x , the first solution should vanish from the ac-
tual solution for Eq. (5), and thus, the unknown variable u satisfies
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considering the following formula for the inverse Laplace transform
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From Eqs. (7) and (8), the unknown variable u(x,t) at any point x
can be expressed as
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Eq. (9) is the exact ABC at the artificial boundary for problems
governed by Eqs. (1)–(4).

2.2. Approximation in Laplace space for the one-dimensional case

When using the ABCs in Eq. (9), in which the artificial boundary is
global in time, special treatment is required. Wu and Sun [17] derived a
stable discrete scheme in time space for Eq. (9), while Wu and Zhang
[21] expanded the irrational function =z s a/ 2 by using a Padé
approximation
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2 1 , k=1, 2,…,N, and N is
the approximate order. z0 is the expansion point in the approximation
in Eq. (10). In this paper, z0= 1, as proposed by Wu and Zhang [21].

The Padé approximation in Eq. (10) can guarantee an accurate ap-
proximation in a finite interval near the expansion point. However, the
variable s in Laplace space with respect to t can vary widely. Then, the
Padé approximation can no longer provide a satisfactory approximation
over the entire time space; this result will be shown in the next section.
To ensure accuracy over the entire time space, a new rational approx-
imation in Laplace space, completely different from the Padé approx-
imation, is proposed below.

It is clear that, for any variable s, we have [22]
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Let =ρ θtan ; Eq. (11) can be converted to
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From Eqs. (11) and (12) we have
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