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A B S T R A C T

This paper develops a Bayesian approach for model comparison and characterization of the bivariate distribution
of c′ and ϕ′ using limited site-specific data. The copula approach is presented to model the bivariate distribution
of c′ and ϕ′. The Bayesian model comparison method is developed to select the most probable bivariate dis-
tribution model of c′ and ϕ′. The most probable model is used to characterize the joint probability density
function (PDF) of c′ and ϕ′ under the Bayesian framework. The developed approach is illustrated and validated
using real data of c′ and ϕ′ for clays from the core wall of Xiaolangdi rockfill dam in China.

1. Introduction

The shear strength parameters of soil [i.e., effective cohesion (c′)
and effective friction angle (ϕ′)] are important parameters for evalu-
ating stability and deformation of geotechnical structures, such as
slopes (e.g., [41,9,27,28,29,13]), retaining walls (e.g., [25,16]) and
foundations (e.g., [26,7,8]). In reliability analysis of these geotechnical
structures, c′ and ϕ′ are typically treated as uncertain variables
[9,16,7]. Furthermore, it is widely accepted that c′ and ϕ′ are negatively
correlated parameters (e.g., [18,17,24,27,28,29,12,13]). To achieve a
realistic evaluation of geotechnical reliability, the joint probability
distribution of c′ and ϕ′ should be constructed since ignoring the ne-
gative correlation between c′ and ϕ′ would lead to a substantial over-
estimate of the probability of failure (e.g., [17,7,27,28,29,13]).

Recently, the copula approach (e.g., [22]) provides a general and
flexible way for modeling the joint probability distribution of c′ and ϕ′
(e.g., [28,29,38,39,44,21,12,13,40]). A copula refers to a function that
couples a multivariate distribution to its one-dimensional marginal
distributions (e.g., [22]). There are many copulas in the literature to
characterize the dependence structure among variables such as Gaus-
sian, t, Plackett, Frank, Clayton and Gumbel copulas (e.g., [22]). Each
copula has its own characterized dependence structure. The copula
approach constructs the joint probability distribution of c′ and ϕ′ by
combing the marginal distributions of c′ and ϕ′ with a copula function.
Specifically, the construction of the joint probability distribution of c′
and ϕ′ includes: (1) identification of the best-fit marginal distributions
and copula, and (2) estimation of distribution parameters of the best-fit

marginal distributions and copula parameters of the best-fit copula.
Conventional statistical methods are commonly adopted to con-

struct the joint probability distribution of c′ and ϕ′. For instance, AIC
(Akaike Information Criterion) scores are often used to identify the
best-fit marginal distributions and copula (i.e., a marginal distribution
or copula with the minimum AIC score among the set of candidate
distributions or copulas is the best-fit marginal distribution or copula).
Furthermore, sample mean, standard deviation and correlation coeffi-
cient are used to estimate the distribution parameters and copula
parameters. Note that AIC scores as well as sample mean, standard
deviation and correlation coefficient are statistics derived from the site-
specific laboratory or field test data of c′ and ϕ′ [12]. Therefore, the
accuracy of the constructed joint probability distribution of c′ and ϕ′
using conventional statistical methods depends on the reliability of the
derived statistics, which lies on the sample size of the site-specific data
of c′ and ϕ′. For example, a minimum sample size of 30 is required to
achieve a meaningful estimation of the mean, standard deviation and
correlation coefficient [1]. The minimum sample size increases dra-
matically to more than 100 to achieve a reliable identification of the
best-fit marginal distributions and copula using AIC scores (e.g.,
[14,15,30]). However, small sample size for geotechnical data is a
common feature in geotechnical practice. The sample size of geo-
technical data in a specific site is typically less than 30 for common
geotechnical parameters (e.g., [23,31,37,6]). The joint probability
distribution of c′ and ϕ′ derived from a small sample size has large
statistical uncertainty and may be seriously biased (e.g., [30]). There-
fore, characterization of the joint probability distribution of c′ and ϕ′
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based on limited site-specific data is a challenging problem in geo-
technical engineering.

In addition to the limited site-specific data, there are often some
prior knowledge (e.g., engineering judgement, local experience, pub-
lished reports and studies) about the site. To make up for the lack of
site-specific data, it is useful to take advantage of these prior knowledge
so that a reasonable characterization of geotechnical variability can be
achieved. The Bayesian approach has been proven to be a robust and
practical approach for combining limited site-specific data with prior
information in geotechnical engineering (e.g., [20,42,43]). The Baye-
sian approach can also quantify the statistical uncertainty in geo-
technical variability derived from limited site-specific data. As the
sample size of site-specific data increases, the statistical uncertainty in
geotechnical variability decreases, and the geotechnical variability
converges to its true value (e.g., [6]). The Bayesian approach has been
widely applied to characterize geotechnical variability (e.g.,
[31,33,34,37,5,2,3,4,32,35,36]). For example, the Bayesian approach
has been used for model comparison in geotechnical engineering such
as the selection of appropriate regression models for predicting rock
and soil parameters [3,35,36], the selection of spatial correlation
function for characterizing the spatial variability of soil parameters [4],
and the identification of soil stratification [2,33,34]. Furthermore, the
Bayesian approach has been adopted to characterize the univariate
probability distribution of soil parameters such as sand friction angle
[31], Young′s modulus of clay [32] and undrained shear strength [3].

The aforementioned studies using the Bayesian approach focused on
one geotechnical parameter only. To characterize the variability of two
geotechnical parameters, Wang and Aladejare [36] adopted the Baye-
sian approach to derive the site-specific joint probability distribution of
uniaxial compressive strength (UCS) and Young′s modulus (E) of rock.
However, the study of Wang and Aladejare [36] did not perform model
comparison to select the most probable bivariate distribution model
(including the most probable marginal distributions and copula func-
tion) of UCS and E, but used the bivariate normal distribution model
directly in the characterization of the site-specific joint probability
distribution of UCS and E. The bivariate normal distribution assumes
that both UCS and E follow univariate normal distributions, and their
dependence structure can be characterized by a Gaussian copula. It is
well known that geotechnical parameters do not necessarily follow
univariate normal distributions. They may follow univariate lognormal
distributions, Gumbel distributions, Gamma distributions, and among
others. Similarly, geotechnical parameters also do not necessarily have
a dependence structure of the Gaussian copula. They may have a de-
pendence structure of the Plackett copula, Frank copula, No.16 copula,
and among others. More importantly, the selection of the marginal
distributions and copula for geotechnical parameters has a significant
impact on the calculated geotechnical reliability (e.g., [28,13]). Past
studies (e.g., [28,13]) showed that the probabilities of failure for geo-
technical structures produced by different marginal distributions and
copulas can differ in several orders of magnitude. Therefore, prior to
the characterization of the joint probability distribution of geotechnical
parameters using the Bayesian approach, the model comparison among
the various bivariate distribution models using the copula approach
should be conducted, and is the topic of the present study.

This paper aims to develop a Bayesian approach for model com-
parison and characterization of the bivariate distribution of c′ and ϕ′
using limited site-specific data. To achieve this goal, this article is or-
ganized as follows. In Section 2, the copula approach for modeling the
bivariate distribution of c′ and ϕ′ is briefly introduced. In Section 3, the
Bayesian model comparison method for selecting the most probable
bivariate distribution model of c′ and ϕ′ using limited site-specific data
and prior knowledge is developed. In Section 4, Bayesian character-
ization of the joint probability density function (PDF) of c′ and ϕ′ using
the most probable bivariate distribution model is presented. The im-
plementation procedure is provided in Section 5, followed by the il-
lustration and validation of the developed approach using real data of c′

and ϕ′ for clays from the core wall of Xiaolangdi rockfill dam in China
in Section 6.

2. Bivariate distribution of c′ and ϕ′ using copulas

The copula approach (e.g., [22,12]) is adopted in this study to
model the bivariate distribution of c′ and ϕ′. Let F(c′, ϕ′ | pc′, qc′, pϕ′, qϕ′,
θ) be the joint cumulative distribution function (CDF) of c′ and ϕ′. The
marginal CDFs of c′ and ϕ′ are denoted as F1(c′ | pc′, qc′) and F2(ϕ′ | pϕ′,
qϕ′), respectively. According to Sklar’s theorem (e.g., [22]), F(c′, ϕ′ | pc′,
qc′, pϕ′, qϕ′, θ) can be expressed in the following general form:

′ ′ = ′ ′ =′ ′ ′ ′ ′ ′ ′ ′F c ϕ p q p q θ C F c p q F ϕ p q θ C u v θ( , | , , , , ) ( ( | , ), ( | , )| ) ( , | )c c ϕ ϕ c c ϕ ϕ1 2

(1)

where (pc′, qc′) are the distribution parameters for c′; (pϕ′, qϕ′) are the
distribution parameters for ϕ′; C(u, v | θ) is a bivariate copula function,
and θ is a copula parameter describing the dependency between c′ and
ϕ′. As shown in Eq. (1), the marginal CDFs F1(c′ | pc′, qc′) and F2(ϕ′ | pϕ′,
qϕ′) are usually denoted as u and v ranging from 0 to 1, respectively.
Therefore, both u and v are standard uniform variables, and C(u, v | θ) is
essentially a bivariate probability distribution on [0, 1]2 with uniform
marginal probability distributions on [0, 1]. By taking derivatives of Eq.
(1), the joint PDF of c′ and ϕ′, f(c′, ϕ′ | pc′, qc′, pϕ′, qϕ′, θ), can be ob-
tained as:

′ ′ = ′ ′′ ′ ′ ′ ′ ′ ′ ′f c ϕ p q p q θ f c p q f ϕ p q D u v θ( , | , , , , ) ( | , ) ( | , ) ( , | )c c ϕ ϕ c c ϕ ϕ1 2 (2)

where f1(c′ | pc′, qc′) and f2(ϕ′ | pϕ′, qϕ′) are the marginal PDFs of c′ and
ϕ′, respectively; D(u, v | θ) is a copula density function, which is given
by

= ∂ ∂ ∂D u v θ C u v θ u v( , | ) ( , | )/2 (3)

Sklar’s theorem states that the bivariate distribution of c′ and ϕ′ can
be expressed in terms of a copula function and their marginal dis-
tributions. Given the marginal distributions of c′ and ϕ′, and the copula
function describing the dependence structure between c′ and ϕ′, the
joint CDF and PDF of c′ and ϕ′ can be obtained by using Eqs. (1) and (2).
Note that pc′ and qc′ are related to the mean μc′ and standard deviation
σc′ of c′, while pϕ′ and qϕ′ are related to the mean μϕ′ and standard
deviation σϕ′ of ϕ′. Similarly, the copula parameter θ relates to the
Kendall rank correlation coefficient τ between c′ and ϕ′ as follows (e.g.,
[12]):

∫ ∫= −τ C u v θ C u v θ4 ( , | )d ( , | ) 1
0

1

0

1

(4)

Therefore, F1(c′ | pc′, qc′) and f1(c′ | pc′, qc′) can be replaced by F1(c′ |
μc′, σc′) and f1(c′ | μc′, σc′), respectively. Similarly, F2(ϕ′ | pϕ′, qϕ′) and
f2(ϕ′ | pϕ′, qϕ′) are replaced by F2(ϕ′ | μϕ′, σϕ′) and f2(ϕ′ | μϕ′, σϕ′), re-
spectively. For C(u, v | θ) and D(u, v | θ), they are replaced by C(u, v | τ)
and D(u, v | τ), respectively. As a result, F(c′, ϕ′ | μc′, σc′, μϕ′, σϕ′, τ) and f
(c′, ϕ′ | μc′, σc′, μϕ′, σϕ′, τ) are used instead of F(c′, ϕ′ | pc′, qc′, pϕ′, qϕ′, θ)
and f(c′, ϕ′ | pc′, qc′, pϕ′, qϕ′, θ), respectively, and expressed as:

′ ′ = ′ ′ =′ ′ ′ ′ ′ ′ ′ ′F c ϕ μ σ μ σ τ C F c μ σ F ϕ μ σ τ C u v τ( , | , , , , ) ( ( | , ), ( | , )| ) ( , | )c c ϕ ϕ c c ϕ ϕ1 2

(5)

′ ′ = ′ ′′ ′ ′ ′ ′ ′ ′ ′f c ϕ μ σ μ σ τ f c μ σ f ϕ μ σ D u v τ( , | , , , , ) ( | , ) ( | , ) ( , | )c c ϕ ϕ c c ϕ ϕ1 2 (6)

The key tasks for modeling the bivariate distribution of c′ and ϕ′
using copulas are to select appropriate marginal distribution functions
for c′ and ϕ′, and a copula function describing the dependence structure
between c′ and ϕ′. Since there exists a negative correlation between c′
and ϕ′, the copulas allowing a wide range of negative correlation
coefficients are selected to fit the dependence structure between c′ and
ϕ′. For this reason, the Gaussian copula, Plackett copula, Frank copula
and No.16 copula (e.g., [28,29,13,12]) are selected as the set of can-
didate copulas to fit the dependence structure between c′ and ϕ′. These
four copulas can describe negative dependences, and the values of
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