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A B S T R A C T

The strain and local rotation at any material point in a deformable body can be descripted by the strain-rotation
(S-R) decomposition theorem. This paper presents a three-dimensional dynamic deformation formulation based
on the S-R decomposition. The three-dimensional dynamic analysis formulation is generic and can be easily
implemented into numerical methods. By combining the new formulation with the discontinuous deformation
analysis (DDA), a new method named SR-3D-DDA is developed. We further use several examples to demonstrate
that the S-R based DDA can help effectively eliminate the nonphysical volume change exhibited by existing DDAs
and improve the accuracy of the predictions.

1. Introduction

Modern engineering design requires numerical tools to be devel-
oped in three-dimensional (3D) to be truly predictive. 3D formulations
have therefore been implemented in mainstream numerical methods
(see e.g. [1–19]). Frequently, numerical predictions of a practical 3D
problem need to address challenges pertaining to various nonlinear
behaviors, including material nonlinearity, contact nonlinearity and
geometric nonlinearity. The conventional popular approaches include
the total Lagrangian formulation (T.L.) and the updated Lagrangian
formulation (U.L.) are all based on the Green’s strain and polar de-
composition theorem [20]. Recently, a new dynamic analysis for-
mulation, based on strain-rotation (SR) decomposition theorem, has
been proposed [21] to tackle geometric nonlinearity. It has demon-
strated an advantage in simultaneously capturing the strain and local
rotation reasonably well. However, it is only limited to two-dimen-
sional cases. Meanwhile, as an alternative to describe the dynamic
behavior of discontinuous media such as rock that involving discrete
block system, 2D discontinuous deformation analysis (2D-DDA) [22]
has been developed and has been extended to 3D as well [23]. DDA is
able to conveniently simulate the translation, rotation and contact of
blocks, while the fundamental unknowns can be made independent of
the shapes of blocks. Various techniques have been developed to ad-
dress the nonlinear behaviors, in particular the contact nonlinearity,
based on new contact models [24] and contact resolution or detection
algorithms [25–30]. A nodal-based 3D-DDA [31] and a particle-based
3D-DDA were further proposed [32] to enhance the predictive

capability of DDA to deal with the deformation of blocks. The bonding
and cracking algorithm aiming at 3D particles were implemented
[33].The some latest advances in DDA can be found in [34]. However,
there have been relatively scarce studies addressing the geometric
nonlinearity in DDA.

An apparent pitfall in both 2D [35] and 3D [36] DDA methods is the
false volume expansion predictions due to the adoption of first-order
rotation approximation. A variety of mitigation methods have been
proposed in the past for DDA, including the displacement adjustment
method [35], the Taylor series method [37], the trigonometric method
[38], and the displacement-strain modification method [39]. Amongst
them, the 3D displacement adjustment method [36] appears to perform
more robustly in suppressing the unreasonable volume expansion in 3D-
DDA. However, in cases of “dual-axial rotation” and “tri-axial rotation”
(to be defined in Section 4), the predictions by 3D displacement ad-
justment method may potentially result in nonphysical expansions in
the direction(s) perpendicular to the rotation axis and nonphysical
contractions in the direction parallel to the same rotation axis. So the
geometrical shape of discrete block is forced to change non-physically
though the volume of the block remains the same. The abovementioned
expansion and contraction associated with 3D displacement adjustment
method seems to have never been mentioned in the literature.

This study presents a substantial extension of the 2D dynamic de-
formation formulation previously proposed by the authors [21] to
three-dimensional case. To effectively address the issue of geometric
nonlinearity, a new formulation based on the S-R (strain-rotation) de-
composition theorem [40–44] is developed which is generic and readily
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applicable to numerical method. The new S-R formulation is then im-
plemented into 3D-DDA to form a new method termed SR-3D-DDA.
Several examples are further presented to demonstrate that the ad-
vantage of the SR-3D-DDA in capturing the geometric nonlinearity of
blocks. The study can offer an effective method in tackling a wide range
of engineering problems involving discontinuous materials.

2. Three-dimensional dynamic formulation based on S-R
decomposition

Considering the following deformable body in an Euclidean space in
Fig. 1, where r and R are the position vectors of a point before and after
deformation, respectively; and u is the displacement vector; gi

0
and gi

(i = 1, 2, 3) represent two local basic vectors at a point corresponding
to the co-moving coordinate system before and after deformation, re-
spectively.

The S-R decomposition theorem [40–44] states the following de-
composition of deformation gradient F into the strain tensor and rota-
tion tensor:

= +F S R (1)

where the strain tensor is defined by
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where δj
i is the Kronecker-delta. In Eqs. (2) and (3), Lj
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and the average rotation angle θ is determined according to
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The rotation in a deformed body can be generally described by three
methods: (1) the coordinate axis method, i.e., according to [45] (figure
16.1 therein); (2) the quaternion method [46–48]; and (3) the axis-
angle method [45,49]. In this study, a rotation matrix or tensor is ex-
pressed through a unit rotation axis vector (p) and a rotation angle (α)
about the axis. For a rigid body rotation, the average rotation angle (θ)
in the S-R decomposition is exactly the rotation angle (α) [40]. For the
rotation of deformable body, the average rotation angle has a more
profound meaning. Several typical examples were given by [40] to

illustrate the features of the average rotation angle.
An updated co-moving coordinate as shown in Fig. 2 is adopted,

where the superscript “ t” and “ +t tΔ ” correspond to the two con-
secutive time t and +t tΔ , respectively. In S-R decomposition theorem
[43], the symmetric stress is work-conjugate to the strain defined by Eq.
(2). Considering a deformable body and applying the principle of vir-
tual displacement, the incremental governing equation can be ex-
pressed as [21]
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where σj
i is the stress, SΔ Li

j and SΔ Ni
j are the linear and nonlinear strain

increments, respectively. D jl
ik is the material tensor associated with the

rate-form constitutive laws. Moreover Fine and Fpen are the virtual work
corresponding to the inertia force, constraint force of specified dis-
placement, respectively. Fext represents the external force including the
surface and body forces. The hat-lines “ −” and “ =” indicate that the
variable with respect to basic vectors gt i

0
and + gt t

i
Δ 0

, respectively. For
more details one can refer to [21].

The two-dimension problem has been addressed in [21], the three-
dimension discretization format will be deduced here. For discretiza-
tion of space domain, the same interpolation matrix N x y z( , , ) can be
employed for expressing displacement u, velocityV and acceleration A.
It should be pointed out that the expressions of N x y z( , , ) is dependent
on the specific numerical method and the mesh topology.

Consider an arbitrary discrete unit, the displacement and displace-
ment increment vectors related to the discrete unit can be denoted by u
and uΔ , respectively. Reconsidering Eq. (2), at any point in the discrete
unit, the strain vector S can be written as
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Fig. 1. A deformable body in three-dimension Euclidean space.

Fig. 2. Update of the three-dimension co-moving coordinate.
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