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a b s t r a c t

Similarly to the treatment of diluted gases, kinetic methods are formulated for the study of unidirectional
freeway traffic. From these it is possible to construct fluid-dynamic equations which in comparison with
heuristic fluid-dynamic models have the advantage of just some adjustable parameters although they
have some other restrictions. In this work the comparison between two macroscopic models which are
based on a kinetic traffic equation is shown. On the other hand, there will be presented some advances to
attempt to generalize some restrictions of the kinetic formulation in order to study the synchronization
phenomena, which is a very interesting transitory phase between free flow and traffic jams.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Kinetic equations have been used to construct hydrodynamic
traffic models based on microscopic assumptions. In the kinetic
theory of traffic has appeared a large number of kinetic equations
to study unidirectional vehicular flow [1–6]. It is well known that
macroscopic equations for averaged variables can be obtained from
kinetic equations. To do this task, we need a microscopic model, a
method to find an approximate solution in the kinetic equation and,
a closure hypothesis. With such a squeme we have constructed two
macroscopic models with a support based on the kinetic Paveri-
Fontana equation [3]. Though the Paveri-Fontana equation was not
the first kinetic model in the literature, it has been proven to over-
come some of the shortcomings of the pioneer kinetic equation
named as the Prigogine’s model [1,2]. In this work we have used
the Paveri-Fontana kinetic equation to construct macroscopic mod-
els assuming an aggressive drivers behavior [7–9]. Starting from a
kinetic model, the macroscopic model thus obtained have some
advantages and of course also some disadvantages. The principal
one is that kinetic theory is restricted to the low density regime,
and the macroscopic models derived from them selfrestrict to this
region. This restriction has prevented us to apply such a model
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when we have the congested regime, hence in this work we gener-
alize the model to a situation in which the experimental data give
us the rule to go into the dense region. This paper is organized as
follows. In Section 2 Prigogine and Paveri-Fontana models are pre-
sented and compared, and a particular solution for Paveri-Fontana’s
model is presented in Section 3. Sections 4 and 5 are devoted to
macroscopic-kinetic models and their closure. In Section 6 numer-
ical results are shown and finally in Section 7 we present some
comments, conclusions and perspectives.

2. Kinetic equations

Kinetic theories are based on an equation for the distribution
function f, where f (x, v, t) dx dv denotes the number of vehicles at
time t between x and x + dx with speed between v and v + dv. Pri-
gogine’s model is the first one of this kind and was presented in
1960 [1,2]. Prigogine et al. stand the existence of a desired distribu-
tion function f0, which is a mathematical idealization of how drivers
desire collectively to drive. Prigogine and co-workers assumed that
the distribution function may deviate from the desired distribution
function f0 due to various factors, e.g. road factors, weather con-
ditions or interactions with other vehicles. On such situations and
provided interactions are negligibly small, f relaxes to f0 over a con-
stante relaxation time �, although it may be a function of density or
some other variable. Based on these assumptions and in analogy to
the Boltzmann kinetic equation, Prigogine et al. suggested the next
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kinetic equation
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where the first term to the right accounts for a relaxation of f
towards f0 and the second term accounts for the changes in f
due to interactions between vehicles. For the first term, Prigogine
proposed a collective relaxation toward f0 in a single relaxation
time �, where the desired speed distribution remains independent
of the local concentration �(x, t) so that f0(x, v, t) = �(x, t)F0(v).
In the interaction term are considered the increase/decrease of
the number of vehicles in the phase-space due to interactions
between vehicles. The concept of desired distribution as well as
the scenario of collective relaxation, in a diluted system, has been
received severe criticism [3] and very commonly this model has
been replaced by the Paveri-Fontana model.

To overcome the problems of Prigogine’s model, Paveri-Fontana
proposed an alternative model where he introduces a new phase-
space coordinate, the so called desired velocity w. In this case, the
distribution function g(x, v, w, t) dx dv dw denotes the number of
vehicles at time t, in position dx around x, velocity dv around v
and desired velocity dw around w. With �x = (x, v, w), the total local
change of the phase space density is given through a continuity
equation

∂g
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)
int

,

where the second term in the right hand side represents the drift
in the correcponding phase space and in the right hand side we
have the contributions coming from the interaction between vehi-
cles. For the interaction term Paveri-Fontana proceded similarly
as Prigogine. The drift term was constructed taking into account
the following ideas: for the acceleration term he proposes dv/dt =
(w − v)/�, i.e. the drivers approach their desired speed exponen-
tially in time, with an individual relaxation time � and additionally,
it is considered that drivers do not changes their desired speed thus
(dw/dt = 0). In this way the Paveri-Fontana equation (PFE) reads
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0
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where the right hand side represents the interaction between vehi-
cles and

f (x, v, t) =
∫

dw g(x, v, w, t).

In order to compare with Prigogine’s Eq. (1) it is possible to integrate
Eq. (2) over all w’s to obtain the reduced Paveri-Fontana equation
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0
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where f (v, x, t)W(v, x, t) =
∫ ∞

0
wg(x, v, w, t) dw.

In analogy to the scattering process in kinetic gas theory, both
kinetic models have the usual restrictions, see [3]. To compare the
Paveri-Fontana equation with Prigogine equation observe that the
central difference is the introduction of g(x, v, w, t), which involves
a new variable in phase space instead of assuming the existence
of a desired distribution function f0. As can be seen, both cases
consider the interaction process described in the same way. In
contrast, the relaxation process, though based in the existence of
a unique relaxation time, has different physical meaning. In Pri-
gogine’s model it represents a collective relaxation towards the
velocity distribution f0 and, in Paveri-Fontana’s equation the relax-
ation time corresponds to an individual relaxation. This treatment
permits to bypass the problem of assigning f0 a priori and the prob-
lems pointed out by Paveri-Fontana in his thought experiments
[3].

3. Steady and homogeneous solution

If a simple model for aggressive drivers is considered, it is possi-
ble to obtain an analytical solution of the reduced PFE for the steady
and homogeneous state (SHS), usually called as the equilibrium
state. The details of this calculations can be seen in [8,9], where is
proposed a model for the desired velocity W(x, v, t) = ωv, and ω is
a proportionality constant bigger than unity but close. This model
is called for aggressive drivers cause the desired velocity is mod-
eled proportional to actual speed, which means than in average the
drivers want to drive a little faster than they are driving. Assuming
this model, the solution of (3) for the the steady and homogeneous
state is

fe(v) = ˛

�(˛)
�e

Ve

(
˛v
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)˛−1
exp

(
−˛v

Ve

)
, (4)

where

˛ = (1 − p(�e))�eVe�

ω − 1
, (5)

is a constant which may be determined by the experimental data. In
fact, the fundamental diagram Ve(�e), the probability of overpass-
ing p(�e) and, the relaxation time are quantities for which some
values are available. On the other hand, it is possible to verify
that the quantity ˛ is closely related with the variance prefactor

Fig. 1. (a) Comparison of the distribution function (4) (blue) and a gaussian distribution (red) for the same SHS values. (b) A(�) proposed by Helbing in [11].(For interpretation
of the references to color in this figure legend, the reader is referred to the web version of the article.).
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