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A B S T R A C T

Upon crack propagation, brittle geomaterials such as concrete and rock exhibit a nonlinear stress/strain beha-
vior, damage induced stiffness anisotropy, loading path dependent strain softening and hardening, unilateral
effects due to crack closure and a brittle-ductile transition, which depends on the confining pressure. Challenges
in theoretical and numerical modeling include the distinction between tensile and compressive fracture pro-
pagation modes, mesh dependency during softening, and lack of convergence when several critical points are
expected on the stress/strain curve. To overcome these issues, we formulate a nonlocal micromechanics based
anisotropic damage model. A dilute homogenization scheme is adopted for calculating the deformation energy of
the Representative Elementary Volume due to the displacement jumps at open and closed micro-cracks. Tension
(respectively compression) damage criteria are expressed in terms of non-local equivalent strains defined in
terms of positive principal strains (respectively deviatoric strains). Constitutive parameters are calibrated against
published experimental data for concrete and shale. We employ the arc-length control method to solve
boundary-value problems with the finite element package OOFEM: the algorithm allows capturing softening,
snap back and snap through. We simulate the development of the compression damage zone around a cavity
under various stress levels at the wall and far field, and the softening behavior consequent to tensile fracture
propagation during a three-point bending test. No mesh dependency is noted during softening as long as micro-
cracks do not interact.

1. Introduction

Understanding the mechanical behavior of quasi-brittle materials,
such as concrete and rocks, is crucial in civil and petroleum en-
gineering, for instance to analyze concrete structure failure or model
hydraulic fracturing in reservoir rock. Laboratory experiments and field
investigations show that the inception, growth and coalescence of
micro cracks at the grain scale induce a complex nonlinear behavior at
the macro-scale: tensile softening starts at a very low stress compared to
the compressive yield stress, the formation of crack families of different
orientations results in anisotropic stiffness reduction, crack closure
produces unilateral effects, and in compression, a brittle-ductile tran-
sition occurs as the confining pressure is increased [1–4].

At the scale of a Representative Elementary Volume (REV - typi-
cally, the laboratory sample scale), Continuum Damage Mechanics
(CDM) models are either based on phenomenology or micromechanics
[5]. In phenomenological models, damage is an internal state variable
defined as a tensor of second order [6–8] or fourth order [9,10], used to
represent anisotropic stiffness reduction. The expression of energy

potentials in terms of damage is constrained by symmetry and positivity
requirements [11,12]. In order to satisfy thermodynamic consistency
conditions, the energy release rate (damage driving force) that is work-
conjugate to damage is used to construct damage criteria and damage
potentials [13–15]. The inconvenient of phenomenological models is
that the energy potentials are arbitrarily crafted to match observed
stress/strain curves. As a result, constitutive relationships depend on
material parameters that do not have any specific physical meaning. By
contrast, in micromechanics, the material response at the REV scale is
derived from matrix-inclusion interaction laws. Crack surface dis-
placement jumps and local stresses are expressed explicitly and up-
scaled. Depending on whether the interaction among cracks is con-
sidered or not, a variety of homogenization techniques can be used, e.g.
the dilute scheme [16–20], the self-consistent method [21–23], Mori-
Tanaka scheme [24–26]. All of these models depend on the density of
each crack family (i.e. each crack orientation). Cracks of a family are
assumed to follow the same geometrical evolution laws, which are
derived from fracture mechanics [27,28]. Under usual matrix-interac-
tion assumptions, micro crack coalescence cannot be captured, which
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makes it impossible to model softening. In addition, most micro-
mechanical approaches require the implementation of sophisticated
iterative algorithms at the material point, which induces huge compu-
tational costs [29].

From a numerical perspective, simulation results become mesh-de-
pendent when a local softening constitutive model is used to analyze
failure. Strain localization renders the problem mathematically ill-
posed [30,31]. The regularization techniques that are the most widely
used to address this issue are differentiation based and integration
based nonlocal formulations. Differentiation-based models are enriched
with the first or higher-order gradient of state variables or thermo-
dynamic forces, which allows accounting for the variations of variables
within a neighborhood around material points [32–35]. When the
gradients of state variables are used in the formulation, additional de-
grees of freedom need to be implemented for Finite Element Analysis,
for instance the third-order stress tensor (conjugate to the gradient of
deformation). In integration based nonlocal models, a variable at a
point is calculated as a weighted average over a certain neighborhood
of that point [36–40]. The weights that quantify the intensity of the
interaction between Gauss points is tabulated, so that each Gauss point
interacts with the Gauss points in its neighborhood. The size of the
neighborhood is determined by an internal length parameter. Ad-
vantages and limitations of the different regularization techniques are
discussed in [41]. Another challenge of failure analysis is non-con-
vergence issues encountered at the global iteration level. The classical
Newton-Raphson scheme based on loading control only or displacement
control only works when only hardening effects are considered. In case
of snap back or snap through, more advanced methods, such as line
search [42] or arc length control [43,44] need to be used.

In this paper, we derive the expression of damage energy potentials
from micromechanics to formulate and implement a nonlocal aniso-
tropic damage model. Under the assumption of crack non-interaction,
the free enthalpy is obtained by integrating open and closed crack
surface displacement jumps in all possible crack orientations within a
unit sphere (Section 2). We construct equivalent strains induced by
open and closed cracks. Following a phenomenological approach, we
formulate two damage criteria and two damage potentials to predict the
evolution of crack density. Single element simulations (at the Gauss
point) of cyclic uniaxial tension-compression and triaxial compression
tests demonstrate the capabilities of the proposed framework. In Sec-
tion 3, we explain the theory and implementation of the nonlocal model
and we describe the arc length control method employed in the re-
solution algorithm. In Section 4, we calibrate the proposed damage
model against published experimental results of triaxial compression
tests performed on shale and uniaxial tension tests performed on con-
crete. We simulate damage development around a circular cavity, with
an initial confining pressure followed by different stress paths. We also
simulate a three-point bending test with the calibrated model para-
meters.

2. Local anisotropic damage model

2.1. Micromechanics-based Gibbs energy

We adopt the expression of the free enthalpy established in [45], for
a REV of volume Ωr and external boundary ∂Ωr subjected to a uniform
stress σ . It is assumed that a large number of penny shaped microscopic
cracks of various orientations are embedded in an isotropic linear
elastic matrix of compliance tensor 0 . Each microscopic crack is
characterized by its normal direction →n and its radius a, which is at
least 100 times smaller than the REV size. Opposite crack faces are
noted +ω and −ω , with normal vectors→+n and→−n . The macro strain of a
REV that contains a single set of N microcrack oriented in planes
normal to→n is the sum of the elastic strains of the matrix and the strains
due to the normal and shear crack displacement jumps, denoted as u[ ]n

and ⎯→⎯u[ ]t respectively. Therefore:

∫ ∫= + → ⊗ → + ⎯→⎯ ⊗ →

+ → ⊗ ⎯→⎯
∂ ∂+ +σ N u n n S N u n

n u S

:
|Ω |

[ ]( )d
2|Ω |

([ ]

[ ])d
r ω n

r ω t

t

0∊∊ 

(1)

Since it is assumed that cracks do not interact, we use a dilute
homogenization scheme. The stress that acts on crack faces is a direct
projection of the macroscopic stress (i.e. stress at the REV scale).
According to fracture mechanics principles, the average normal and
shear displacement jumps for a single crack embedded in a linear iso-
tropic elastic matrix can be expressed as follows [21,46,47]:
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In which E0 and ν0 are the Young’s modulus and Poisson’s ratio of the
matrix, respectively.

Correspondingly, the average volume fraction of the normal and
shear displacement jumps for a single family of cracks are calculated as:
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The elastic free enthalpy of the cracked REV can be expressed as
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A normal displacement jump can only be induced by a tensile force,
i.e. for → → ⩾σn n· · 0. The unilateral contact condition at crack faces can
thus be expressed as:

⩾ = → → ⩾ =σu σ n n u σ[ ] 0, · · 0, [ ] 0n nn n nn (5)

After combining all the equations above, the free enthalpy for the
considered REV with a single set of N cracks is expressed as:
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In which we note 〈 〉 = ⩾+x x x, 0, and 〈 〉 = <+x x0, 0. The coefficient c0
(respectively c1) is defined as the normal (respectively shear) elastic
compliance of the crack. →ρ n( ) is the crack density, for the set of N
cracks oriented in planes perpendicular to →n . We define:
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For several crack sets of different orientations, the Gibbs free energy of
the REV is obtained by integrating ∗G for a distribution of crack densities

→ρ n( ), over the unit sphere = → → =S n n{ ,| | 1}2 , as follows:
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At the scale of the REV, the second order crack density tensor ρ is de-
fined in such a way that: → = → →ρρ n n n( ) · · . The second order damage
tensor is defined as follows:
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It can be shown mathematically (see [48,49] for details) that the crack
density function →ρ n( ) is related to the damage tensor as follows:
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The free energy is the sum of the elastic deformation energy stored in
the matrix and the elastic energy stored by displacement jumps across
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