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A B S T R A C T

A new numerical upper-bound method applicable to three-dimensional stability problems in undrained clay is
proposed and applied in the analysis of tunnel face stability. Comparisons with the elasto-plastic finite element
method (FEM) reveal that this method could provide sufficiently accurate upper-bound prediction for the tunnel
face stability factors. For tunnels with large cover depth, the obtained results greatly improve the existing upper-
bound solutions. Their corresponding velocity fields are investigated, which show a similar evolving pattern with
those of the FEM. A discussion is made to compare the various advantages of multi-block mechanisms and
continuous mechanisms in tunnel face stability.

1. Introduction

Underground tunnel excavation has become commonplace in in-
frastructure projects worldwide. An important design parameter in
tunnel face stability is the support pressure that is applied at the tunnel
face. Due to the practical significance of three-dimensional (3D) tunnel
face stability, substantial research investigations have been conducted
with various methods including the empirical method [2], lower bound
limit analyses [3,8,13], upper-bound limit analyses [3,5,6,8–11,13] and
elasto-plastic finite element (FE) analyses [14,16]. Broms and Benner-
mark [2] first proposed a hand calculation design expression for tunnel
face stability in undrained clay by empirically relating the expected
deformations with various factors such as support pressure, surcharge,
soil unit weight, cover depth and tunnel diameter to determine whether
the tunnel is sufficiently supported. The first theoretically rigorous
analysis of 3D tunnel face stability was carried out by Davis et al. [3]
using both upper and lower bound limit analyses. Leca and Dormieux
[8] extended the work of [3] into fictional soil. Ukritchon et al. [14]
and Zhou [16] further utilized the finite element method (FEM) to re-
evaluate the accuracy of the previously published results.

As a widely used analysis method, the applications of the upper-
bound method in 3D tunnel face stability are further reviewed. The
upper-bound method can be divided into three categories according to
their underlying mechanisms. The first approach is to postulate me-
chanisms composed of either translational [3,8,10] or rotational rigid
blocks [11] where the energy dissipation exists solely at the interfaces
between adjacent blocks. The second approach is to develop continuous

failure mechanisms with no discontinuity, where the energy is solely
dissipated by plastic deformation throughout the continuums [5,6,9].
The third approach is to construct failure mechanisms with both de-
formable zones and discontinuity surfaces [13]. The continuous velo-
city field of Klar et al. [6] was derived from both the elasticity solution
corresponding to the original plastic problem and the concept of sinks
and sources. The continuous mechanism of Mollon et al. [9] was ob-
tained from the elasto-plastic finite difference method (FDM). The finite
element limit analysis (FELA) was employed by Sloan [13] to in-
vestigate 3D tunnel face stability. However, the difference between the
upper and lower bound for 3D tunnel problem is quite large when
compared with the 2D FELA solutions [1].

Much effort has been put into constructing upper-bound solutions
for 3D undrained tunnel stability. However, a significant gap still exists
between the upper-bound results and the elasto-plastic FEM results for
tunnels with large cover depth. Such a gap might be attributed to the
difficulty in constructing complicated 3D upper-bound velocity fields.
This paper attempts to propose a generally applicable 3D upper-bound
method for undrained clay based on the total loading extended mobi-
lisable strength design (T-EMSD) proposed by Huang et al. [4] and Yu
et al. [15], which can acquire the upper-bound solution through elastic
iterative analysis and thus could be conveniently replicated through an
elastic displacement-based FEM package. The method will be applied to
3D undrained tunnel stability, and the obtained upper-bound solutions
will be thoroughly compared with existing solutions.
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2. Method of analysis

The T-EMSD, developed from the EMSD, is a total loading method to
obtain an upper-bound load-displacement solution of a plane-strain
problem through iterative computation, rather than optimal computa-
tion. It has been verified in the study of the soil resistance to the lateral
movement of a 2D circular pile. The T-EMSD is able to directly calculate
an upper-bound lateral resistance under a given total pile displacement
(without the need for an incremental loading process). Large enough
displacements would enable the resistance to approach an upper-bound
lateral limit load. This section will extend the T-EMSD theory to a
generic 3D condition and illustrate its application in obtaining the
upper-bound tunnel face stability factor.

2.1. Theory

Shield and Drucker [12] demonstrated that the upper-bound the-
orem for Tresca material, conventionally adopted for undrained clay,
can be expressed as
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where Ti and fi are the vectors of surface traction and body force acting
on the boundary S and V respectively; vi is the kinematically admissible
velocity field; su is the undrained shear strength of the soil; ε| ̇ |max is the
absolute largest principal component of the plastic stain rate εi̇j com-
patible with vi; vΔ t is the magnitude of the relative velocity change
across the discontinuity surfaces A; and ∗Ti is the upper-bound collapse
load.

For a continuous velocity field, Eq. (1) becomes
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Klar and Osman [7] demonstrated that the upper-bound theorem of
Eq. (1), expressed in the form of rate, could be rewritten as the energy
conservation of the internal and external increment of work
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where =dε dε dε dεmax(| |,| |,| |)max 1 3 3 is the increment of the largest abso-
lute principal strain; c ε( )m s is the mobilised strength, which is a function
of engineering shear strain εs (= ∑ −dε dε| |n

1 1 3 , n is the number of the
loading steps); for an elastic perfectly-plastic material c ε( )m s equals to
Min G ε s( , )s s u , where Gs is the shear modulus of the soil. With εs accu-
mulating during loading, c ε( )m s tends to su such that ∗Ti tends to an

Fig. 1. Problem notation and example finite element layout of 3D undrained tunnel face
stability.
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Fig. 2. Flow diagram for tunnel stability.
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