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A reliability analysis method based on the combination of the first-order reliability method (FORM) and
hybrid particle swarm optimization (SACPSO) is presented for the reliability optimization calculation.
The new reliability method, named as SACPSO-FORM, can be utilized for those complex reliability prob-
lems with correlated non-normal variables and implicit performance functions. Three examples are per-

formed to verify its validation, and stability reliability analysis on the complicated rock foundation of a
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practical gravity dam is demonstrated. The results show that the proposed method is accurate, stable,
flexible and efficient for reliability analysis in engineering applications.
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1. Introduction

It is a trend to use the reliability method for evaluation of the
risk of failure in almost all engineering fields, including some in
geotechnical engineering [1-3]. The current challenge to the engi-
neering profession is to carry out reliability theory in practice [4].
Many researchers have focused on the research topics of
reliability-based design and risk analysis, and made progress in
resolving the problem about the failure of slopes, levees, embank-
ments, dams and other geotechnical engineering in recent years
[1,4,5].

The approximate methods to estimate the reliability index g for
time-invariant reliability analysis in geotechnical engineering can
be basically classified to five categories as follows: (1) sampling
method such as Monte Carlo simulation (MC) [6]; (2) the most
probable point (MPP, or design point) based method such as the
first order reliability method (FORM) [1,7] and second order relia-
bility method (SORM) [7-10]; (3) expansion method such as first-
order second-moment method (FOSM) [1,5]; (4) response surface
method (RSM) [11-17]; (5) approximate integration method
[18,19]. In fact, every method mentioned above has its merits
and limitations in terms of accuracy, efficiency, robustness and
flexibility. MC is an accurate and robust method to estimate g for
almost all kinds of reliability problems when sufficient large sam-
ple size is used, while it is rarely adopted due to its huge calcula-
tion time for small probability failure problems or problems with
complicated performance function, g(X) [6]. FOSM is an efficient
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numerical method to obtain g, but the applicability is relatively
limited because the partial derivatives of g(X) are difficult to be
derived from implicit to explicit involving complex failure modes
of geotechnical engineering at some times [1,2]. RSM and
improved RSMs are usually utilized to obtain the solution of g
for complex reliability problems, but it is relatively complicated
and also needs much more computing cost with lower efficiency,
since it has a lot of iterating calculation at different design points
associated with numerical method (i.e., finite element method)
to fit limit state curved surface, g(X)=0[11-17]. As to the approx-
imate integration method, it is always not suitable to solve the
geotechnical reliability problems with complex or implicit g(X)
[19].

FORM and SORM are based on first-order or second-order
approximations of the limit state at the MPP of failure (or design
point). SORM was developed by Kiureghian and his colleagues
[7,8]. Many others have proposed numerical techniques for solving
the underlying mathematical problem of the SORM, such as asym-
potic approximation for multinormal integrals developed by Bre-
itung and his coauthors at first [20,21]. However, the nonlinear
and explicit performance function, g(X), for SORM must be known
previously, and the tedious Hessian matrix must be solved during
calculation. So SORM has not been widely used in geotechnical
reliability applications, especially for the reliability analysis with
correlated non-normal variables and implicit g(X). As well known,
FORM is widely used in reliability analysis due to its simplicity,
efficiency and flexibility, and was recommended by the Joint Com-
mittee of Structural Safety (JCSS). The basic theory of FORM was
developed by Hasofer and Lind [22]. Rackwitz [23] indicated that
for 90% of all applications with respect to time-invariant reliability
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computation this simple method fulfills the practical needs. The
traditional FORM is usually expressed as the minimization of
objective function associated with g subjected to limit state,
g(X) =0 [24-28]. For traditional FORM, the performance function
must be explicit in most cases. For the case of implicit performance
function, some techniques have been developed. For example, Low
and Tang successively developed spreadsheet-cell-object-oriented
constrained optimization approach and another efficient spread-
sheet algorithm for reliability analyses [29,30]. Low and Tang's
methods can process the reliability problems involving non-
normal and correlated variables and explicit or implicit perfor-
mance function. However, the traditional FORM and Low and
Tang’s methods utilize the gradient based method for convergence
and easily fall into local optimal solution of 5. So FORM is confined
from complicated reliability computation and a suitable optimiza-
tion searching procedure is critical for the global solution. Based on
the principle of FORM, many researchers have tried to use other
optimization algorithms for the reliability optimization calculation
[31,32]. Cheng applied a hybrid genetic algorithm based FORM to
structural reliability analysis [32].

In the paper, a novel FORM based on a hybrid intelligent evolu-
tionary algorithm, SACPSO, which combines particle swarm opti-
mization with constriction coefficient (CPSO) and simulated
annealing process (SA), is proposed to solve optimization problems
of time-invariant reliability analyses in geotechnical engineering.
The article is organized as follows. In Section 2, the proposed
SACPSO-FORM is introduced in detail. In Section 3, the validation
of the method is demonstrated by 3 different types of examples
for reliability analyses and then compared with other conventional
reliability methods, such as MC, RSM, FOSM and traditional FORM,
regarding solution quality and computational efficiency. In Sec-
tion 4, the SACPSO-FORM is applied to realize the optimum calcu-
lation of stability reliability index of complicated rock foundation
over multiple sliding planes for an actual gravity dam under con-
struction, and the results are compared with MC. We draw some
conclusions in Section 5.

2. Method
2.1. FORM method

For FORM [ 7-10], the reliability index 8 subject to the constrainis
. _ 12
p=min[(X - 1[Cx]”" (X~ o) a
STZ=g(X)=0

where X is the vector of uncertain variables; y and ¢ are respec-
tively the vectors of the means and standard deviations of X; Cx is
covariance matrix; g(X) is the performance function.

The objective function f{X) for reliability calculation can be

expressed as f(X) = [(X — 1)"[Cx] " (X — )]"”* (see the first line of
Eq. (1)). If f{X) equals a constant, it will be described as an ellipsoid
in terms of multivariate X in matrix format. In Fig. 1, for example,
the 1-o ellipse, the g-a ellipse, and the failure surface are plotted
together for a 2-dimension reliability problem when correlation
coefficient p = 0.7. The ellipse that is tangent to the failure surface,
g(X)=0, is p times the size of the 1-¢ dispersion ellipse. This pro-
vides a geometric interpretation of the reliability index g in the
original space of the random variables. The point of tangency, P,
is the design failure point represented by (X3, X3, ..., Xi,*) which
can be found by optimization.

When the random variables are correlated and in non-normally
distribution, the Rackwitz-Fiessler equivalent normal transforma-
tion is implemented without considering to diagonalize the covari-
ance matrix Cy [24,33,34].
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Fig. 1. 1-0 dispersion ellipse and critical ellipse of some a 2-dimension reliability
problem (Low and Tang, 2004) [29].

2.2. Hybrid particle swarm optimization

2.2.1. Basic PSO

Particle swarm optimization (PSO) has been used to tackle opti-
mization issues in the past decade. It is in the form of probabilistic
heuristics with global search properties. The algorithm was first
proposed by Kennedy and Eberhart [34], and subsequently its con-
vergence rate and method to select the best parameters had been
discussed [35]. PSO applies swarm intelligence to obtain the goal
of optimization. The population refers to the best experience of
the individuals and group, respectively, and some evolutionary
methods by which individual will move itself by the experience
are logically applied. After continuous iterations, the particle pop-
ulation will concentrate towards the optimum solution rather than
randomly looking for the solution. The significant characteristic of
PSO is in its simple structure, fast convergence, and its ability to
prevent falling into a local optimum solution [36-42].

In the basic PSO algorithm, each particle is in the d-dimensional
search space. The position vector of the ith particle is recorded as
si=[si', s ..., sk ..., s% and its velocity vector is represented as
vi=[v', v? ..., % ..., /]. In each generation j, the particles are
manipulated according to the following equations:

d

v, = v?J + ¢y - rand; - (pbestfj - sfj) + ¢y - rand, - (gbestf - sfj)

(2)

d d d
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S
where c; and c; are learning factors of PSO; rand, and rand, are ran-
dom numbers between 0 and 1; pbestfj is individual best optima for
particle i after j iterations; gbestf’ is group optima after j iterations.
Particle’s velocity, v;fj. in each generation on each dimension is con-
fined to a maximum velocity parameter ., specified by the users
[35].

Kennedy presented that the trajectories of non-stochastic one-
dimensional particles contained interesting regularities when
c1 *+ ¢ was between 0.0 and 4.0 [35]; Clerc and Kennedy’s analysis
of the iterative system led them to provide a strategy for the place-
ment of “constriction coefficients” in the terms of the above formu-
las [36]. This adjusted PSO is called CPSO in the paper. The
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