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a b s t r a c t

This article presents three-dimensional structural optimization in geotechnical engineering for founda-
tions in granular soil. The general design (topology) of a shallow foundation is optimized with respect
to its deformational behaviour within the service limit state. The SIMP (solid isotropic material with
penalization) method is applied to optimize the distribution of foundation material. The soil is modelled
as a hypoplastic material with a constitutive model suitable for optimization using finite element anal-
ysis. Two load cases are examined. The optimized topology is validated against two-dimensional opti-
mization and 1g-model test results. The present study proves the applicability and shows the potential
of topology optimization in geotechnical engineering.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Geotechnical design usually consists of common structural ele-
ments such as piles, shallow foundations, walls or anchors. Those
are combined to a system that fulfils stability and serviceability
requirements. Contrary to other engineering fields, like automotive
or aircraft engineering, numerical structural optimization methods
are scarcely used in the geotechnical design process. However, by
applying these methods the structural design may be adapted opti-
mally to problem specific demands, which saves expenses, econo-
mizes material use, improves the deformational behaviour and
reduces the construction time.

Within the structural optimization three branches may be dis-
tinguished: dimension optimization, shape optimization and
topology optimization.

Out of these the dimension optimization is the best known and
often applied in geotechnical engineering. It comprises the opti-
mization of construction parts through e.g. the variation of mate-
rial thicknesses, element lengths or diameters. Some examples
are the sizing of a shallow foundation [1,2], of a pile group [3] or
grillage [4], of the reinforcement of a concrete pile [5] and of a quay
wall [6].

A broader spectrum of the possible design results from shape
optimization since angles and form of the construction or several

construction parts may be varied during optimization. This type
of structural optimization has, among others, already been applied
to piled raft foundations [e.g. 7], to pile grillages [e.g. 8,2], to quay
wall constructions [e.g. 6] and underground excavations
[e.g. 9–11].

Using topology optimization it is possible to generate an opti-
mized structure from an unshaped block. No preset solutions have
to be provided1 and therefore the possible optimization result is not
restricted to commonly known structural elements. The basic struc-
tural set-up, the so called topology, can be determined efficiently
based only on the knowledge of loads and limiting boundaries.
Therefore topology optimization is able to support the design pro-
cess at early stage. However, the herein presented application of
topology optimization to geotechnics has only recently been
initiated in research. The topology optimization of an underground
excavation in linear-elastic material is shown in [13–17,10] and in
nonlinear material is shown in [18,12,19]. The topology optimization
of a foundation beneath a strip footing in granular Mohr-Coulomb
material [2] and in granular hypoplastic material [20–23] has been
presented.

So far the application of topology optimization in three
dimensional problems in geomechanics has been limited to finding
thebest shapeof undergroundopenings [13,11]. This paper presents
the application of topology optimization to a three-dimensional
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geotechnical foundation problem to examine whether it yields
plausible and efficient solutions, also in more realistic three-
dimensional modelling. The three-dimensional model is based on
a two-dimensional model and corresponding 1g-model tests in
[21,22], which are used to validate the three-dimensional results
against.

2. Numerical method

Structural optimization usually comprises the coupling of
mathematical optimization methods with numerical simulation,
e.g. the Finite Element Method (FEM). The following sections
describe the numerical method arising from this coupling.

2.1. Topology optimization with SIMP 3D

The numerical structural optimization can be conducted using a
density-based approach to topology optimization as proposed by
Bendsøe [24] and Zhou and Rozvany [25].2 Using this approach
the topology optimization problem is considered as a material distri-
bution problem in which the relative material distribution is param-
eterized. A design domain is discretized using finite elements. The
optimization variables are relative material densities q which are
assigned to the finite elements. The material properties of each ele-
ment e, e.g. its stiffness are linked to its relative material density qe,
which may take on values between 0 and 1. However, in order to
obtain structural design with crisp boundaries, intermediate values
for the relative material density have to be excluded. Therefore a
power-law approach is applied, which is referred to as Solid Isotro-
picMaterial with Penalization (SIMP). For the conducted analysis the
element’s stiffness Ee is defined by the modified SIMP-approach e.g.
[27]:

EeðqeÞ ¼ Esoil þ qp
eðEstruc � EsoilÞ; qe 2 ½0;1� ð1Þ

Considering the topology optimization of a geotechnical structure
Esoil represents the stiffness of the surrounding subsoil and Estruc

the stiffness of the structural material. p is the penalization factor.
In order to prevent the convergence to local minima the penaliza-
tion factor is continuously increased. Adapting a continuation for-
mulation [28], the penalization factor p using the iteration
number k is given by

pk ¼ 1 k 6 10;
min½pmax;1:021pk�1� k > 10;

�
ð2Þ

where pmax ¼ 5. The chosen formulation results in lower system’s
strain energy after 100 iterations compared to the original stepwise
increase of the penalty factor p, Fig. 1, and will, therefore, be used in
all presented examples.

Several computational codes for topology optimization can be
found in literature, of which the efficient three-dimensional code
from Liu and Tovar [30] is chosen as basis for the presented appli-
cation. The code is written in Matlab and proceeds earlier two-
dimensional codes [31,32]. The three dimensional code has an
inbuilt FE-analysis, which has been modified to link with ABAQUS/
STANDARD instead to meet the complexity requirements of the ana-
lyzed geotechnical problem. Additional necessary adaptations for
geotechnical topology optimization are described in the following.

The minimum compliance problem is adapted in the presented
application. The objective is to find a material distribution within
the design domain that minimizes the system’s strain energy
which implicitly minimizes the deformations. Pucker [21] pro-
poses to evaluate the strain energy at the integration points. The
structure’s strain energy c is therefore defined as a sum over all

integration points g of the FE-model [21]. The optimization prob-
lem (Eq. (3)) is subject to a volume constraint and the constrained
domain for the relative material density qe:

min : cðqÞ ¼ eTCe ¼
Xn
e

Xm
g

ðqe;gÞpeTe;gCe;gee;g

subj: to :
VðqÞ
V0

¼ vf

0 < qmin 6 qe 6 1;

ð3Þ

where e denotes the strain tensor, C denotes the material tensor, V
denotes the material volume and vf the volume fraction within the
design domain.

The optimality criteria (OC) method is used for optimization.
This method is derived from the Karush-Kuhn-Tucker conditions
for optimality. A basic updating scheme based on the OC-method
is presented by Bendsøe and Sigmund [33]. It has been modified
to include a gray-scale filtering technique by Groenwold and
Etman [34]. The herein presented optimization uses Groenwold
and Etman’s formulation [34]:

qnew
e ¼

maxðqmin;qe �mÞ if qeB
g
e 6 maxðqmin;qe �mÞ;

minð1;qe þmÞ if minð1;qe þmÞ 6 qeB
g
e

ðqeB
g
e Þq otherwise;

8><
>: ð4Þ

where m ¼ 0:2 is a moving limit, which constraints the change for
the updated relative density, g ¼ 0:5 is a numerical damping coeffi-
cient and q is a variable for gray scale filtering [34]. According to the
optimality condition Be is given as

Be ¼
� @c

@qe

k @V
@qe

; ð5Þ

where k is the Lagrangian multiplier for volume constraint. The
derivation of strain energy (also referred to as sensitivity) for the
modified SIMP approach is adapted from [21] and given by
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Fig. 1. Development of system’s strain energy during optimization for the excentric
model and vf = 0.46875% for two continuation methods for the increase of the
penalty factor p according to the iteration number k. A gradually increasing
continuation method (Eq. (2)) modified after [28] marked with the solid line and a
stepwise increasing continuation method [e.g. 29].

2 For further approaches to topology optimization see e.g. [26].
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