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a b s t r a c t

We review the foundations and applications of the proper generalized decomposition (PGD), a power-
ful model reduction technique that computes a priori by means of successive enrichment a separated
representation of the unknown field. The computational complexity of the PGD scales linearly with the
dimension of the space wherein the model is defined, which is in marked contrast with the exponential
scaling of standard grid-based methods. First introduced in the context of computational rheology by
Ammar et al. [3,4], the PGD has since been further developed and applied in a variety of applications
ranging from the solution of the Schrödinger equation of quantum mechanics to the analysis of laminate
composites. In this paper, we illustrate the use of the PGD in four problem categories related to computa-
tional rheology: (i) the direct solution of the Fokker-Planck equation for complex fluids in configuration
spaces of high dimension, (ii) the development of very efficient non-incremental algorithms for transient
problems, (iii) the fully three-dimensional solution of problems defined in degenerate plate or shell-
like domains often encountered in polymer processing or composites manufacturing, and finally (iv) the
solution of multidimensional parametric models obtained by introducing various sources of problem
variability as additional coordinates.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The direct solution of many problems in scientific computing
has long been thought intractable in view of the so-called curse
of dimensionality. Consider for example the quantum-mechanical
description of a physical system made of N particles. The evolu-
tion of the associated wavefunction is governed by the Schrödinger
equation (or its relativistic Dirac counterpart). This defines a tran-
sient problem to be solved in a space of dimension d = 3N + 1. A
typical grid-based discretization with M nodes for each coordinate
would yield a total number of discrete unknowns of order Md. A
rather coarse discretization (M = 103) of a modest atomic system
(d = 30) would thus involve 1090 unknowns. This is a gigantic num-
ber indeed, larger than the presumed number 1080 of elementary
particles in the universe, according to the estimate put forward in
the 1920s by the famous astronomer A.S. Eddington.
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Problems defined in high-dimensional spaces abound. For
example, the atomistic and mesoscopic models of theoretical rheol-
ogy usually involve a large number of configurational coordinates.
They thus also constitute a rich source of mathematical problems
defined in high-dimensional spaces. In particular, coarse-grained
models of kinetic theory result in a Fokker-Planck equation for
the distribution function that must be solved in both configura-
tion space, physical space and temporal domain. Until recently, the
direct numerical solution of the Fokker-Planck equation has been
limited to models having but few (2 or 3) configurational degrees
of freedom (see e.g. the review [22]).

In two recent papers [3,4], we have proposed a technique able
to circumvent, or at least alleviate, the curse of dimensionality. This
method is based on the use of separated representations. It basically
consists in constructing by successive enrichment an approxima-
tion of the solution in the form of a finite sum of N functional
products involving d functions of each coordinate. In contrast with
the shape functions of classical methods, these individual functions
are unknown a priori. They are obtained by introducing the approx-
imate separated representation into the weak formulation of the
original problem and solving the resulting non-linear equations. If
M nodes are used to discretize each coordinate, the total number of
unknowns amounts to N × M × d instead of the Md degrees of free-
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dom of classical mesh-based methods. Thus, the complexity of the
method grows linearly with the dimension d of the space wherein
the problem is defined, in vast contrast with the exponential growth
of classical mesh-based techniques.

In [3], for example, this new technique has allowed us to
compute solutions of the Fokker-Planck equation in configuration
spaces of dimension 20 using the multi-bead-FENE spring model of
dilute polymer solutions.

The method was later coined proper generalized decomposition
(or PGD), as in many cases the number N of terms in the separated
representation needed to obtain an accurate solution is found to
be close to that of the optimal decomposition obtained by applying
a posteriori the proper orthogonal decomposition to the problem
solution.

The goal of the present review paper is twofold. First, we
wish to describe the PGD with sufficient detail and general-
ity in order to allow the interested reader to grasp its main
features and to implement it for her or his particular appli-
cation. Second, we illustrate recent developments of the PGD
for the solution of four problem categories that are typical of
computational rheology: (1) the direct solution of the Fokker-
Planck equation for complex fluids in configuration spaces of high
dimension, (2) the development of very efficient non-incremental
algorithms for transient problems, (3) the fully three-dimensional
solution of problems defined in degenerate plate or shell-like
domains often encountered in polymer processing or composites
manufacturing, and finally (4) the solution of multidimensional
parametric models obtained by introducing various sources of
problem variability as additional coordinates. We also point to the
recent literature where other applications of the PGD have been
reported.

Use of the PGD is by no means restricted to computational rhe-
ology. In fact, each of the above problem categories instantiates
a significant challenge in scientific computing that the PGD can
address efficiently whereas standard techniques either cannot be
used at all or are computationally very expensive indeed:

(1) Quantum mechanics and molecular modeling of complex flu-
ids are not the only branches of science that suffer from the
curse of dimensionality. Consider for example a chemical pro-
cess involving so few molecules of the reacting species that use
of the continuum concept of concentration is not valid. This
situation is often found in genetic processes such as expres-
sion of genes. The state of such a discrete system is given by a
probability distribution for the number of individual molecules
of each one of the d coexisting species. The balance equation
governing the evolution of the system, the so-called master
equation, is again defined in a high-dimensional space that
prevents direct solution by means of standard grid-based tech-
niques. There are of course alternative methods to address these
high-dimensional problems indirectly, stochastic simulations
being one of the foremost approaches. Stochastic techniques
have their own challenges, however. While variance reduction
is always an issue, it is impossible with a stochastic technique to
implement parametric or sensitivity studies that go beyond the
brute force approach of computing a large number of expensive,
individual simulations.

(2) The second problem category involves time-dependent prob-
lems not necessarily defined in high-dimensional spaces, but
whose spectrum of characteristic times is so wide that standard
incremental time discretization techniques cannot be applied.
In such cases, the time step is extremely small as a consequence
of numerical stability requirements. Thus, simulations over the
much larger time interval of interest, which typically requires
the solution of a large linear algebraic system at each time
step, simply become impossible. Multiscale models involving

a wide range of characteristic times abound in many fields.
Reaction-diffusion models of the degradation of plastic materi-
als, for example, describe chemical reactions occurring within
microseconds coupled to diffusion of chemical substances that
takes place over years.

(3) Problems of the third category are defined in degenerate geo-
metrical domains. By this we mean that at least one of the
characteristic dimensions of the domain is smaller by sev-
eral orders of magnitude than the others. This is the case of
bar, plate or shell-like domains typical of materials processing
applications. In simple situations, such problems are readily
transformed into reduced, one or two-dimensional approxi-
mate theories (e.g. the classical elastic plate theory). When
geometrical or material non-linearities are present, however,
it is usually impossible to derive lower-dimensional models of
sufficient validity. Standard grid-based discretization methods
then quickly become impractical, in view of the compulsory dis-
cretization of the small length scales that yield extremely fine
meshes.

(4) Finally, many problems in process control, parametric model-
ing, inverse identification, and process or shape optimisation,
usually require, when approached with standard techniques,
the direct computation of a very large number of solutions of the
concerned model for particular values of the problem param-
eters. Consider for example the optimization of a pultrusion
process where optimal parameter values must be determined
for process operating conditions (e.g. pultrusion speed, position
and temperature of heaters) and material properties (e.g. ther-
mal and rheological properties of the resin). Clearly, it would be
useful to be able to simulate this process at once for all values
of these parameters within a prescribed interval, and then per-
form data mining within this rather general solution to identify
optimal values. As we shall see, this can be achieved with the
PGD by viewing all sources of problem variability as additional
coordinates of a higher-dimensional problem.

The paper is organized as follows. We begin with a brief discus-
sion of model reduction and illustrate the use of the standard POD
technique to build a reduced-order model a posteriori. The PGD is
then described at a glance in Section 3. Technical details are given
in Section 4 for the solution of a parametric heat transfer problem.
The four problem categories are further discussed in Section 5, and
their individual PGD treatment is illustrated in the four subsequent
sections.

2. Model reduction: information versus relevant
information

Consider a mesh having M nodes, and associate to each
node an approximation function (e.g. a shape function in the
framework of finite elements), we implicitly define an approx-
imation space wherein a discrete solution of the problem is
sought. For a transient problem, one must thus compute at
each time step M values (the nodal values in the finite ele-
ment framework). For non-linear problems, this implies the
solution of at least one linear algebraic system of size M at each
time step, which becomes computationally expensive when M
increases.

In many cases, however, the problem solution lives in a sub-
space of dimension much smaller than M, and it makes sense to
look for a reduced-order model whose solution is computation-
ally much cheaper to obtain. This constitutes the main idea behind
the proper orthogonal decomposition (POD) reduced modeling
approach, which we revisit in what follows.
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