
Research Paper

A novel finite element two-step solution scheme for fully coupled
hydro-mechanical processes in poroelastic media

Gen Li a,b,c,⇑, Chun-An Tang a,b,c, Lian-Chong Li a,c, Hong Li a,c

a State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China
b State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083, China
cOcean Engineering Joint Research Center of DUT-UWA, Dalian 116024, China

a r t i c l e i n f o

Article history:
Received 23 November 2015
Received in revised form 27 April 2016
Accepted 24 June 2016

Keywords:
Coupled hydro-mechanical analysis
Fully explicit
Precise integration method
Pressure formulation
Poroelastic

a b s t r a c t

A novel two-step solution scheme (TSSS) is described for fully coupled hydro-mechanical (FCHM) anal-
ysis of saturated poroelastic media. The TSSS is based on the pressure formulation in two-step. In step
one, the pressure field is obtained directly by solving the sub-problems with a reduced scale of displace-
ment variables. This process is fully decoupled. In step two, the displacement field is calculated by stag-
gered iteration of pressure variables. The finite element method (FEM) is used for discretization of the
FCHM differential equations in the space domain. The precise time step integration method is performed
for the time derivatives. The stability and convergence of the TSSS are proved using a matrix-based spec-
tral analysis in the time domain. It is demonstrated that the TSSS is unconditionally stable, fully explicit
and highly precise. The algorithmic error estimation results indicate that the numerical performance in
the time domain can match the computer precision. Theoretically, the algorithmic error is caused only
by mesh discretization. The stability and accuracy of the TSSS are verified and calibrated by numerical
examples. By comparing with the analytical or reference solutions, it is shown that the TSSS result is
highly precise, and it is remarkably better than the standard FEM in terms of precision. In addition,
the numerical results are stable and independent of the time step size. The numerical experiments also
demonstrate the stability, convergence and precision for the pressure formulation of TSSS. The proposed
scheme has great potential in engineering applications for long timescale problems, especially the prob-
lems focusing on the evolution of pressure field.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The interaction between the pore fluid and solid skeleton of
porous geomaterials is a fully coupled fluid-flow and solid-
deformation problem (such as rocks, and soils), which has been
studied in many engineering fields, such as reservoir engineering,
hydraulic and hydropower engineering, geotechnical and environ-
mental engineering [1,2]. The theoretical basis can be dated back to
the mid-20th century, and the mathematical framework can accu-
rately describe the fully coupled hydro-mechanical (FCHM) pro-
cess of saturated poroelastic media [2–4]. However, due to the
complex physical interactions and complicated boundary condi-
tions, the analytical solutions of FCHM problems are available in
only a few situations. The extensive use of computers and the con-
comitant development of numerical techniques have made precise

analysis possible for practical problems and shifted attention from
problem solving to modeling observed phenomena. The eventual
aim is to develop the capability for making high-efficiency and pre-
cise simulators [1,5,6]. In order to achieve this goal, numerical
techniques have developed and extended towards different direc-
tions, such as the numerical approach pertinent to differential
equations [1,7–13], and the numerical stabilized formulation
[14–19] and solution strategies.

After spatial discretization by a numerical approach, the ordi-
nary differential equations are transformed into monolithic equa-
tions. The monolithic equation is commonly discretized in time.
Then, three solution strategies can be adopted in the discretization
system, as direct evaluation, partitioned schemes and two single-
field analysis. Direct evaluation [1,20], i.e. the fully coupled u-p
equation system directly solved simultaneously for the solid dis-
placements u and fluid pressures p at every time step. In such case,
numerical efficiency becomes the primary concern. The overall
efficiency depends to a great extent on the algorithm used for
solution of the algebraic equation system resulted from the
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discretization process. However, with scale of the fully coupled u-p
equation system increasing, the computational cost and memory
requirements for the scheme has rised up dramatically, especially
for long timescale problems. Hence, the sequential solution meth-
ods have been proposed later. Partitioned schemes, including
simultaneous and staggered solutions [21–25]. In the partitioned
schemes, an appropriate partitioning of the matrices is performed
on the algebraic system allowing the equations to be solved
sequentially. Either the flow or mechanical problem is solved first,
with the other field variables frozen. Then the other problem is
solved using the intermediate solution information. One may iter-
ate this sequential procedure at each time step until convergence
[21–25]. During this process, the coupled problem is partitioned
and the sub-problems are solved sequentially. The partitioning
allows for the use of existing robust simulators for the sub-
problems, producing smaller systems of equations to be solved
than the fully coupled methods. However, the stability and conver-
gence of the sequential schemes can be quite different when
addressing various problems [24,25], which leads to difficulties
in practical applications. Therefore the correctness and precision
of these sequential schemes should be carefully assessed each time
[1]. The fully coupled ‘‘true” solution is always the target of
these sequential schemes. The fully coupled method is internally
consistent and rigorous because the fluid flow and the solid
deformation are solved simultaneously on the same discretized
grid [26].

In many practical problems, only the u/p field or the physical
field for a particular moment is concerned. For instance, the
long-term surface subsidence connected with the change of
hydraulic equilibrium in systems comprising aquitards and/or
hydrocarbon reservoirs may be the focus, when there is extensive
groundwater withdrawal and/or oil and gas pumpage for a long
time; on the contrary, the distribution and evolution of the p field
is more concerned during hydraulic fracturing in oilfield, rather
than the distribution of the u field. In this case, either the u or p
field variables can be eliminated from the time-discretized equa-
tion. Smith [27] proposed the so-called displacement formulation,
which yields directly the u field by eliminating p. Alternatively, if
u is eliminated from the monolithic equation and a pressure formu-
lation is obtained after discretization in the time domain, which
was done by Krause [28]. Either the displacement or pressure formu-
lation can be used, i.e. the coupled two-step procedure (or the two
single-field analysis), if both fields are concerned. It should be
emphasized that the two-step procedure gives the fully coupled
solutions, which is consistent with the results of direct evaluation.
The elimination process can be considered as the decoupling pro-
cess for the u or p field variables. The sub-problems with reduced
scale can then be solved.

However, it is worth noting that no matter which numerical
approach and solution strategy is adopted, the finite difference
(FD) operator for the time derivative is always needed. According
to the generalized trapezoidal h-method, the variables and their
temporal derivative in the time interval can be a two-point FD
approximation [1,20], given that h is an integration parameter vary-
ing from 1.0 (fully implicit) to 0 (fully explicit). The value of h has an
important influence on the stability. The approximation is uncondi-
tionally stable when hP 0.5, but for any value of h– 1, the numer-
ical solution can exhibit a spurious rippling effect [29]. Thus the
fully implicit (h = 1) scheme is commonly used. However, the com-
putation precision and computational cost always exist in the FD-
based schemes. The accuracy of the results is sensitive to the time
step size. A large time step size would lead to large errors, but less
time-consuming. In order to optimize this problem, to estimate
the local truncation error and to control the time step size, the adap-
tive time-stepping methods and three-point discretization scheme
have been developed [21,30–34]. Nevertheless, these FD based

schemes are either first- or second-order accurate approximations,
and therefore their accuracy is relatively low. When h = 0, even
though the fully explicit algorithm is simple, it is stable for only
an extremely small time step size, and perhaps the step size is so
small that a real time of interestwould require an excessive number
of steps. Therefore, the fully explicit scheme is not of practical value.
However, the explicit FCHM simulators are still attractive to users
owing to their advantages in that there is no need to solve the linear
equations of the global stiffness matrix (in contrast to the more
commonly used implicit methods) and also no need to check the
convergence of the solution. Thus, the mathematical operation
and structure are simpler. The widely used FLAC software is an
explicit FD program for geotechnical mechanics computation [7].
However, its algorithm is still conditionally stable, which requires
strict control of the time step size. Regrettably, little attention is
devoted to the high precise and unconditionally stable explicit FE
modeling by which the numerical schemes are suitable for the long
time scale FCHM problems. There is no doubt that the development
of a time domain FEM simulator for the FCHM analysis, which is
explicit, insensitive to the time step size and can be easily imple-
mented, is appealing and of great practical value.

This paper presents a novel two-step solution scheme (TSSS)
based on pressure formulation for the FCHM FE modeling of satu-
rated poroelastic media. The proposed TSSS is unconditionally
stable, highly precise and fully explicit, in which the precise inte-
gration method is employed for time derivatives. The initial
numerical integration efforts towards the parabolic partial differ-
ential systems were presented in [35]. Section 2 describes the
mathematical formulation of the FCHM model of saturated
poroelastic media. In Section 3, a FE implementation of the TSSS
is presented, and the stability and convergence of the TSSS are
proved. The accuracy and stability of the numerical scheme are
verified and calibrated in Section 4 by applications in typical
geotechnical problems. The conclusions and remarks are presented
in Section 5.

2. Coupled hydro-mechanical model of saturated poroelasticity

The physical model is based on poroelasticity theories [1,2], and
assumptions are made on the fluid-saturated porous medium, iso-
tropic geomaterials, isothermal single-phase flow of a slightly
compressible fluid (water in this study), and a slow and small
deformation process.

2.1. Differential equations

The governing differential equations for coupled flow and
poroelastic media are based on the linear momentum balance
and mass balance. Under the quasi-static assumption for solid-
phase displacement, the equilibrium equation for mechanical
deformation of the hydro-mechanical system can be written as:

r � rþ qbg ¼ 0 ð1Þ
According to Terzaghi’s effective stress principle that links the

solid grain stress to the fluid pore pressure

r ¼ r0 � apl ð2Þ
where r and r0 are the total and effective Cauchy stress tensor (ten-
sion in the solid phase is positive), respectively; a ¼ 1� Kdr

Ks
is the

Biot’s coefficient, Ks is the bulk modulus of the solid grain, and
Kdr is the drained bulk modulus, p is the (excess) pore pressure
(compression in the fluid phase is positive), l is the second-order
unit tensor, qb is the buoyant density of the saturated porous med-
ium, g is the vector of gravity accelerations. The constitutive law of
the solid phase is
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