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Consolidation analysis of saturated porous media demands the coupling of solid displacements with the
pore fluid pressure via the equilibrium and the continuity of mass. In this paper, a stable numerical
procedure is presented for coupled analysis of consolidation problems in geotechnical engineering. The
numerical framework is based on the Element-Free Galerkin method and the principle of Maximum

Entropy. Identical shape functions are employed for approximating the displacement field as well as
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the pore fluid pressure field. The proposed method is used for analysing several consolidation problems
assuming elastic and elastoplastic soil behaviour. The numerical results indicate that the proposed
Maximum-Entropy Meshless method based on the maximum entropy shape functions is able to provide
stable and robust solutions for consolidation problems in porous media.
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1. Introduction

Meshless methods have significantly progressed during the past
few decades. In these methods a set of nodes is used to discretise
the domain of a problem and, hence, unlike the finite element
(FE) method, connectivity between elements and nodal points does
not exist. This concept implies that meshless methods are more
appropriate than the FE method for tackling geotechnical problems
including extremely large deformations, discontinuities due to
crack propagation and separation of materials, moving boundary
conditions, and strain localisation. It is noteworthy that in geotech-
nical applications, the continuum usually includes a solid phase
(soil particles) and a fluid phase (water), demanding a robust and
stable computational method to model two-phase response.
Among others, the Element-Free Galerkin (EFG) method, developed
by Belytschko et al. [2], has attracted significant attention for solv-
ing geotechnical problems, due to its robustness, relatively high
accuracy, and superior convergence, e.g. see [13,21,29,31]. In the
original EFG method, Moving Least Square (MLS) shape functions
were employed to approximate unknown field variables [1]. MLS
shape functions do not satisfy the Kronecker delta property, creat-
ing technical difficulties and extra computational challenge for
imposing the essential boundary conditions. Recently, the concept
of maximum entropy (max-ent) shape functions was introduced to
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the EFG method, which facilitates application of boundary condi-
tions [1,22,24]. This technique is usually referred to as the
Maximum-Entropy Meshless (MEM) method. Due to their robust-
ness, the max-ent shape functions within the framework of the
EFG method have been widely used in engineering problems.
Examples include incompressible elasticity [14], nonlinear analysis
of reinforced concrete structures [17], and analysis of thin shells
[8]. More recently, these shape functions have been employed for
adaptive meshless analysis [28] as well as combined FE-MEM
methods of analysis of nonlinear solid problems [29].
Consolidation analysis of porous media by meshless methods
has attracted significant attention. Among others, the consolida-
tion phenomenon has been investigated using the EFG method
[9,12,13,18,21], and the Radial Point Interior (RPI) method
[6,5,32,33]. In such analyses the unknown variables include dis-
placements, u, as well as the pore fluid pressures, p. The accurate
prediction of pore water pressure has faced difficulties, for which
stabilisation techniques have been proposed. The instabilities in a
coupled u-p analysis are mainly due to (a) the time integration
scheme, (b) the inconsistency between the order of shape func-
tions used for interpolating displacements and those employed
for approximating pore water pressures. Within the framework
of the RPI method, Khoshghalb and Khalili [6] developed a three-
point time discretisation technique which is second-order accurate
and avoids the spurious ripple effects observed in a two-point
integration scheme. Shibata and Mukarami [21] observed instabil-
ity in consolidation analysis by the EFG method and introduced a
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stabilising term into the weak form of governing equations. The
main advantage of this technique is that the interpolation fields
in the pore pressure field do not reduce the accuracy of numerical
results. Nonetheless, the method demands extra computational
challenge [21]. Regardless of the numerical method, another
source of instability in analysis of consolidation problems is often
due to the inconsistency between the degrees of displacement field
and the pore water pressure field. Oliaei et al. [13] demonstrated
that the same order of MLS shape functions for displacement and
pore water pressure provides stability as well as accuracy of
numerical results provided an implicit time-integration scheme
is employed.

In this study, the MEM method is further extended to allow
fully coupled analysis of fully saturated porous media. It is demon-
strated that the proposed method is intrinsically stable (no stabil-
isation technique is employed), does not require special treatment
of the essential boundary conditions, and can successfully tackle
elasto-plastic consolidation problems in fully saturated porous
media. This is mainly due to the fact that the max-ent shape
functions tend to be much less sensitive to the discretisation of
the domain as well as the diversity in values of the interpolation
field [14].

The outline of the paper is as follows. The equations governing
the consolidation of a porous continuum are presented within the
framework of the MEM method in Section 2. Then, an implicit
scheme based on the Backward Euler method for integrating the
global equations is briefly discussed in Section 3. The maximum
entropy principle and the corresponding shape functions are intro-
duced in Section 4. In Section 5, several numerical examples are
presented to validate the formulation and to demonstrate the sta-
bility of the proposed method. The key outcomes of this study and
the conclusions drawn are summarised in Section 6.

2. Governing equations

In this section the equations governing the nonlinear behaviour
of a two-phase porous medium, assuming small deformations, are
presented. In geotechnical problems, deformations are usually cou-
pled with the dissipation of excess pore fluid pressure. Numerical
analysis of such problems requires the coupling of the equilibrium
with the continuity equation through the principle of effective
stresses and Darcy’s law. Consider the continuum shown in
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Fig. 1, where the problem domain € is bounded by domain bound-
ary I'. The equilibrium is satisfied provided that

G,j_j-‘rbi:() (1)

where ¢ denotes the total Cauchy stress vector, b is the body force
vector, and a comma in the subscript represents a partial derivative
with respect to the indicated variable. Denoting v as the velocity of
soil particles and 7 as the superficial velocity of the fluid relative to
the soil skeleton, and assuming that the soil solids and the pore
water are much less compressible than the soil skeleton, the conser-
vation of mass can be expressed by
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The boundary conditions in Egs. (1) and (2) are
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where 7 is the vector of unit outward normal at a point x on I', T
represents the prescribed traction on the traction boundary I'r, u
is the displacement vector, i denotes the prescribed displacement
on the displacement boundary I, p is the pore water pressure vec-
tor, p represents the prescribed pore water pressure on the pore
water pressure boundary I',, q is the prescribed flow on boundary
I'q, and n; is the porosity of soil.

In the original EFG method, the Moving Least Square (IMLS)
shape functions were employed to approximate unknown field
variables [1]. The MLS shape functions do not satisfy the Kronecker
delta property, creating technical difficulties and extra computa-
tional challenge for imposing the essential boundary conditions.
Maximum entropy (max-ent) shape functions [22]| provide an
alternative way to interpolate the unknown variables while satis-
fying the Kronecker delta property. Therefore, the weak form of
Eq. (1) can be written as
/ Gijéui_de + / b,-(Su,-dQ + TiéuidFT =0 (4)
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where Ju; denotes the vector of virtual displacements. The principle
of effective stress relates the total Cauchy stress to the effective
Cauchy stress, ¢’, and the pore water pressure, p,
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Fig. 1. Problem discretisation by the MEM method.
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