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Mesh-free analysis applied in reinforced soil slopes
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a b s t r a c t

One of the most applicable geotechnical structures whose analysis is carried out through iterative proce-
dures is the reinforced soil slope. In this regard, the most successful method for the reinforced slope anal-
ysis through numerical methods is the finite element method whose updating mesh may result in some
difficulties. In this study, the Natural Element Method (NEM), which is a mesh-free method, in conjunc-
tion with conventional limit equilibrium is implemented to find the slip surface in the reinforced slopes.
Results demonstrate the convergence and preciseness of the present method in comparison with the
other numerical methods and conventional limit equilibrium method.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past decades, the application of polymer grid to
enhance soil properties has increased in civil engineering struc-
tures such as slopes, embankment, and retaining walls [1,2].
Among these geotechnical structures, slopes are the most critical,
since soil slopes sliding in mines, roads, and dams have occasion-
ally contributed to heavy casualties or great financial losses. There-
fore, the safety of slopes has always been a challenge for slope
designers [3]. Several researchers have studied slope stability
topics and terms affecting the performance under different stress
state conditions [4,5]. Engineers primarily use the factor of safety
(F.S.) to evaluate whether slopes are away from failure or not. In
general, the factor of safety is defined as the ratio of resisting force
divided by the driving force [6]. In reinforced slopes, reinforcing
elements impose additional resisting forces that should be added
to the resisting force due to natural soil strength. The most widely
used definition of factor of safety for reinforced slope stability is
determined as the ratio of both the reinforcing force and the soil
strength divided by shear stress required for equilibrium [7].

One of the earliest techniques exploited to analyze slope stabil-
ity was the limit equilibrium method (LEM), in which slip surface
and its factor of safety were obtained using an iterative procedure
[8]. The concepts of LEMs are simple to understand and use. How-
ever, LEMs bear some disadvantages such as (1) implementing the
effect of reinforcement (i.e. geogrid) and soil stiffness, (2) the

effects of backfill soil compaction and sometimes soil cohesion,
and (3) LEMs use the ultimate strength of reinforcements and soil
[9]. Duncan [8] carried out a general review on the limit equilib-
rium methods and the position of finite element slope stability
analysis. Nowadays, in order to overcome LEMs drawbacks,
researchers combine numerical methods such as the finite element
method (FEM) and the finite difference method (FDM) with LEM
for reinforced slope analysis [8]. FEM has been extensively used
in slope stability analysis [10–12]. In the analysis phase of a slope
using FEM aided LEM, the critical slip surface and the correspond-
ing factor of safety are obtained by iteration, in which the geome-
try of slope is discretized into elements. In each step, a slip surface
is selected, and in the next step, another slip surface is chosen;
therefore, the geometry of problem is changed. Finally, the slip sur-
face with a minimal factor of safety is introduced as the critical slip
surface. However, only an approximate factor of safety can be
determined by the FEM aided LEM [10]. In order to achieve a pre-
cise factor of safety by FEM, highly refined mesh is needed [10]
resulting in a more costly analysis [11], or a nonlinear elastoplastic
analysis is required to obtain good results, which is time consum-
ing as well. The high variability in soil properties may also lead to
unreliable responses in the FEM analysis [13]. In FEM aided LEMs,
re-meshing at any stage of the calculation is a simple step in FEM
[10]. However, it may require more computational time or may
cause mesh distortion. These limitations of the FEM with prede-
fined elements motivate engineers to use mesh-free techniques.
Over the past decades, mesh-free methods (MFMs) have been
developed within the engineering sciences, and these methods
are used to solve various problems with complex geometries
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[14–18]. Mesh-free methods have two distinct differences to FEM:
(1) shape function definition is based on nodes position, and (2) the
nodal connectivity evaluation depends on the number of nodes
[19].

MFM was first introduced by Gingold [20] in astrophysical sim-
ulations. Lucy [21] applied and enhanced the smooth particle
hydrodynamics (SPH), which was used for fluid flow modeling.
Although the SPH is able to deal with larger local distortion in com-
parison with grid-based methods like FEM, there are some difficul-
ties concerning the use of SPH that can be listed as follows: (1) the
imposition of essential boundary condition (Dirichlet boundaries)
due to the shape functions properties; (2) instabilities observed
in the solid due to states tensile stress; (3) excess deformation
can be made by parasitic pattern; and (4) low consistency [22].
Since the original version of SPH suffered from instabilities and
inconsistencies, many improvements were inserted into the SPH
[23]. The reproducing kernel particle method (RKPM) was intro-
duced in 1995 [24]. The RKPM overcomes a certain number of dif-
ficulties present in the SPHmethod; however, the imposition of the
essential boundary conditions remains a challenging issue. The
consistency achieved in the RKPM allows the use of RKPM approx-
imations within the weak form framework to discretize the partial
differential equations [23]. The element-free Galerkin (EFG)
method was introduced in 1994 and was one of the first mesh-
free methods based on the weak form framework. The EFG is con-
sistent and stable, although the EFG substantially is more expen-
sive than the SPH method [24]. The moving least square (MLS)
method was developed in the late 1960s for general surface prob-
lems. MLS methods are the same with kernel methods. The weight
function of MLS approximation is obtained based on kernel
approximation which is consistent. Some of the major advantages
of MLS method are partition of unity, the imposition of essential
boundary conditions, coupling with finite element method, and
the speed of computation [23]. Beside these advantages, MLS is
not without disadvantage. The MLS shape functions do not satisfy
the Kronecker delta property (see Fig. 2) [24].

Libersky and Petscheck [25] used MFM in solid mechanics such
as impact, crack growth, fracture and fragmentation. After that,
MFMs were used to solve various problems, especially in which
discontinuities may happen [26,27]. Some of the MFMs, such as
the natural element method (NEM), have special abilities. NEM
focuses on principles completely different from the previous MFMs
such as SPH and RKPM. NEM properties are between MFMs and
FEM [22]. In other words, the NEM shape functions satisfy the Kro-
necker delta property, while simultaneously using the higher-
order and the smoothness of mesh-free shape functions. NEM is
direct and proceeds as an FEM in imposition of a boundary condi-
tion for convex domains. Thus, it can be carried out by relocation in
a system of linear equations. NEM shape function also changes
flexibility around nodes as shown in Fig. 2. NEM proposes the Vor-
onoi diagram and its natural neighbors to define shape functions
[22]. The Voronoi diagram is a method for dividing a domain into
a number of regions based on the position of each point (node).
Here, each node will have corresponding region comprising of all
nodes closer to that node [28]. The Voronoi diagram leads in the
partition of unity [29]. Sukumar [28] introduced NEM and used it
in solid mechanics. Then, NEM is utilized to solve many problems
as Shahrokhabadi and Toufigh [29] exploited it to solve unconfined
seepage problems.

The main purpose of this study is to introduce NEM for interface
modeling in reinforced slope analysis. NEM is used in an adaptive
mesh procedure, in which the mesh distortion is not a serious
issue. NEM is also used for stress analysis in reinforcements and
soil in reinforced slopes. In each iteration, a new slip surface is cho-
sen, and the geometry of the problem and position of nodes are
updated in each step. In applying conventional methods for

stress-strain analysis such as FEM and mesh creation in each phase
of solution, mesh distortion may occur. NEM and its adaptive mesh
in each step of solution and its favorable properties, including local
compact besides d–Kronecker satisfaction, make it simple to be
used [28].

2. Natural element method

The Natural Element Method (NEM) is a Lagrangian Approxima-
tion mesh-free method, which is permitted to carry out calcula-
tions without mesh distortion. The main property of NEM in
contrast to the FEM is its independency upon the mesh arrange-
ment, in which mesh quality has significant influence on the
results [30]. The eye-catching properties of NEM, such as the par-
tition of unity and lack of sensitivity to mesh distortion, have led
to the usage of this method in various engineering problems
[31,32]. Another merit of NEM is the imposition of essential bound-
ary conditions by substitution in a system of linear equations [33].
NEM interpolants are linear between nodes on the convex bound-
ary whose essential boundary conditions can be applied easily.

NEM is based on the natural neighbors interpolation plan
[34,35]. Moreover, local distribution and density of nodes are
two key factors for the computation of correlation among nodes
[36]. These interpolants are calculated based on the Voronoi cells
of nodes set, which are created both in the problem domain and
along boundaries. The discrete model of the domain (X) comprises
of diagrams covering the whole domain named Voronoi diagrams.
In the case of our problem, the soil is tessellated.

Sukumar [37] demonstrated the remarkable properties of NEM
in elastostatic problems, and the fact that the spectacular feature of
NEM is ‘‘acceptable preciseness” in data interpolation.

2.1. Natural neighbors

The concept of natural neighbors is introduced by Sibson [34]
for interpolation scattered data. The Voronoi diagram and Delau-
nay tessellation are the two important concepts to calculate natu-
ral neighbors. Voronoi cells are obtained by dividing a given
domain (X) to special subdomains (Xi) [36]. The Voronoi tessella-
tion is one of the most fundamental and beneficial geometric struc-
tures, which can be applied on an irregular set of nodes.

A given set of nodes N = {n1, n2, n3 , . . . ,nm} is supposed in R2

space in which the Voronoi cell is a division of plane into TI, which
is relevant to node nI. TI determines an area where the interval
between each node and nI is less than the other nodes in set N. A
Voronoi diagram for nI is defined as:

TI ¼ fX 2 R2 : dðX;XIÞ < dðX;XJÞ 8J – Ig ð1Þ

where d(x,xI) is the Euclidean interval between x, and xI.
It is obvious that each Voronoi diagram 1st is the junction of

open half-spaces, each of which are confined by a perpendicular
bisector. Therefore, each Voronoi cell is closed and convex (see
Fig. 1a).

The Delaunay triangle derivation from the Voronoi diagram is
built by the nodes whose Voronoi cells have joint boundaries
(see Fig. 1b). The duality between the two nodes implies that a
Delaunay border between the two nodes in the surface should
exist; their Voronoi cells have the common border.

Delaunay triangles have some features. One of their main fea-
tures is the Empty circumcircle criterion. If DT(nJ,nk,nI) is assumed
to be a Delaunay triangle of the set N, the circle of DT does not
comprise other nodes of N. nj, nk, nl are three triangle vertices
and the center of the circle is on the intersection of Voronoi cell
boundaries, which built the Delaunay triangle [37]. Based on
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