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a b s t r a c t

The Bingham fluid flow is numerically studied using the lattice Boltzmann method by incorporating the
Papanastasiou exponential modification approach. The He–Luo incompressible lattice Boltzmann model
is employed to avoid numerical instability usually encountered in non-Newtonian fluid simulations due
to a strong non-linear relationship between the shear rate tensor and the rate-of-strain tensor. First, the
value of the regularization parameter in Bingham fluid mimicking is analyzed and a method to deter-
mine the value is proposed. Then, the model is validated by pressure-driven planar channel flow and
planar sudden expansion flow. The velocity profiles for the pressure-driven planar channel flow are in
good agreement with analytical solutions. The calculated reattachment lengths for a 2:1 planar sudden
expansion flow also agree well with the available data. Finally, the Bingham flow over a cavity is studied,
and the streamlines and yielded/unyielded regions are discussed.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The studies of non-Newtonian fluids and the flow behaviors are
of high interest to a broad range of disciplines in both science and
technology, including hydrology, geophysics, materials, food, and
biology. A plastic non-Newtonian fluid such as slurry, paste, paint,
and margarine, only flows above a certain level of stress, called
yield stress, while it exhibits little or no deformation below this
yield stress. These materials are usually called Bingham plastics or
Bingham fluids [1]. In many cases of interest, due to the limitation of
analytical solutions it is highly desirable to find efficient numerical
methods for such non-Newtonian flows under complex rheology
properties and complicated bounded geometries. Though signifi-
cant progress has been made in developing numerical approaches
for such viscoplastic flows in various geometries, most of these
schemes are based on traditional finite difference or finite ele-
ment discretization in which a set of appropriate partial differential
equations are discretized and solved [2–7].

The recently developed lattice Boltzmann method (LBM), due to
its inherent vantages like simple implementation, high paralleliz-
ability and great convenience of handling complicated geometries
and boundary conditions, has been successfully developed to study
complex transport phenomena and model complex physics [8,9]
which are usually hardly accessible to traditional macroscopic
approaches. The kinetic essence of the LBM makes it also capable
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of calculating the local components of the stress tensor directly.
The lattice Boltzmann models have been set up for non-Newtonian
flow systems in the literature recently [10–20] by adjusting the
relaxation time (and hence the viscosity) to the local shear rate.
Thereinto, Wang and Ho [17] proposed a lattice Boltzmann model
particularly for Bingham fluid by incorporating the effect of local
shear rate into the lattice equilibrium distribution function, and a
planar sudden expansion flow was examined. Vikhansky [18] pro-
posed a novel and efficient version of the LBM for non-Newtonian
flow simulation and the collisions are treated implicitly, i.e., the
collision term is chosen such that the stress and strain rate ten-
sors satisfy the constitutive equation after the collision. The method
does not need any regularization and the Bingham flow was exam-
ined in his work. However, some velocity derivatives are introduced
into the density equilibrium distribution function in Ref. [17], while
in Ref. [18], a non-linear equation linking stress intensity with shear
rate has to be solved at each node and each time step addition-
ally. In this wok, still basing on the traditional lattice Boltzmann
framework, we employ a fairly simple lattice Boltzmann scheme,
the He–Luo incompressible model [21], with incorporation of the
popular Papanastasiou exponential modification approach [22], to
simulate the Bingham fluid flow.

2. Numerical methods

2.1. The Papanastasiou approach for Bingham fluid

In order to model the stress-deformation behavior of Bingham
fluids, the ideal Bingham constitutive equations have been pro-
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Fig. 1. The dimensionless shear stress against shear rate �̇ according to the modified
Bingham constitutive equation (2) for several values of the exponent m.

posed as [23]

� = �0 + �p�̇ if |�| > �0, (1a)

�̇ = 0 if |�| ≤ �0, (1b)

where � is the shear stress tensor, �0 is the yield stress, �p is a con-
stant plastic viscosity, and �̇ is the shear rate tensor. From these
constitutive relations, it is known that when the magnitude of
shear stress � falls below �0, the material becomes a solid structure
(unyielded). In order to avoid the inherent attribute of discontinuity
in the viscoplastic model, Papanastasiou [22] proposed a modified
equation that makes the shear stress vary continuously with the
shear rate. This called regularization method makes the equation
valid for both yielded and unyielded areas. With Papanastasiou
exponential modification, the Bingham model becomes

� = �0[1 − exp(m�̇)] + �p�̇, (2)

where m is the regularization parameter or the stress growth expo-
nent, which controls the exponential growth of the stress. Ideal
Bingham fluid can be mimicked for a large enough regularization
parameter m to guarantee large apparent viscosity at vanishing
rates of strain. Then from Eq. (2) the apparent viscosity of the Bing-
ham fluid can be expressed as

� = �

�̇
= �p + �0

�̇
[1 − exp(−m�̇)], (3)

where �̇ is the second invariant of the rate-of-strain tensor given
by �̇ =

√
2S˛ˇS˛ˇ and S˛ˇ is defined as

S˛ˇ = 1
2

(
∂u˛

∂xˇ
+ ∂uˇ

∂x˛

)
. (4)

Expressions mentioned above enable the shear stress to change
continuously with the variation of shear rate.

To examine the effect of the value of exponent m on the approx-
imation degree to ideal Bingham fluid, we present the shear stress
against shear rate according to the modified Bingham constitutive
equation (2) for several values of the exponent m. As shown in Fig. 1,
the dimensionless shear stress �/�0 approaches the ideal Bingham
fluid (the solid line in the figure) as the value of m increases, which
indicates that this equation can mimic the ideal Bingham fluid accu-
rately for large enough m. However, in practical simulation, the
value of m cannot be too large since it will result in numerical
instability [24]. An intermediate value of m is usually chosen in the
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Fig. 2. The Bingham apparent viscosity against shear rate �̇ for different Bingham
numbers at Re = 100 and m = 1000 s.

literature like m = 1000 s [5,17,24]. However, under the conditions
of a fixed Reynolds number and exponent m, the approximation
degree to the ideal Bingham fluid deviates obviously if we change
Bingham number during the simulation as shown in Fig. 2, in which
the apparent viscosity calculated by Eq. (3) varies against the shear
rate for different Bingham numbers at fixed Re = 100 and m = 1000 s.
We can see that when Bingham number is large, the apparent
viscosity at lower shear rate is much larger than the viscosity at
larger shear rate and hence the Bingham fluid can be mimicked
very well. On the contrary, when Bingham number is small, the
exhibited apparent viscosity difference between the lower shear
rate and the larger shear rate is so small that the Bingham fluid
is difficult to mimic. Therefore a much larger value of exponent m
is suggested for this situation as shown in Fig. 3. From Fig. 3 we
can see that the Bingham fluid can be mimicked well by adjust-
ing m = 10,000–100,000 s at Re = 100 and a small Bingham number
Bn = 0.01. Here the Reynolds number and Bingham number are
defined as, respectively,

Re = �ūH

2�p
, (5)

Bn = �0H

�pū
, (6)
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Fig. 3. The Bingham apparent viscosity against shear rate �̇ for different values of
exponent m at a small Bingham number Bn = 0.01 and Re = 100.
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