
Research Paper

Investigation of retrogressive and progressive slope failure mechanisms
using the material point method

B. Wang, P.J. Vardon ⇑, M.A. Hicks
Geo-Engineering Section, Faculty of Civil Engineering and Geosciences, Delft University of Technology, The Netherlands

a r t i c l e i n f o

Article history:
Received 27 October 2015
Received in revised form 10 March 2016
Accepted 27 April 2016

Keywords:
Dynamics
Failure mechanism
Material point method
Retrogressive failure
Slope stability

a b s t r a c t

Retrogressive and progressive slope failures are a dynamic process, in the sense that they involve a pro-
gressively changing scenario. This paper uses the contemporary material point method (MPM), to provide
a view of how such failures develop. Two main scenarios are presented: (a) a relatively small slope,
which, when subjected to an initial failure, is steepened, leading to the initiation of further failures ret-
rogressing backwards; and (b) a long slope, where an initial perturbation (e.g. an excavation) triggers a
series of failures that can retrogressively move up-slope.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Informally, ‘‘a movement of a mass of rock, earth or debris down
a slope” is defined as a landslide [1]. Based on the type of material
(e.g. rock, soil) and the mode of the movement (e.g. falls, slides)
involved, various types of landslides have been identified [2–4].
The corresponding failure mechanisms, identified mostly through
the back analysis of case histories, are also diverse and compli-
cated, due to the interactions of adjacent sliding bodies [4]. A num-
ber of related descriptions have been summarised [3], such as
advancing, enlarging, progressive or retrogressive.

If an initial slide occurs and the material in the failure flows
away, which is usually caused by a high degree of strength loss,
a steep main scarp will usually be formed and therefore support
for the remaining soil will be removed. This can result in another
failure, termed a retrogressive failure. This process can repeat itself
in a multiple-retrogressive fashion, and can result in a bigger land-
slide. In some slopes, such strength loss does not occur almost
instantaneously, but is associated with the magnitude of shear
strain, so that the rupture surface propagates through the soil pro-
file over time. In this case, the term ‘‘progressive” is used. Reported
cases include the retrogressive failures of cemented sensitive clays
in the Ottawa–St. Lawrence Lowlands [5]; retrogressive landslide
complexes in the Boone valley in the French Alps [6]; and the

progressive failures of observed landslides in Scandinavia and east-
ern Canada [7]. The recent Oso landslide in Washington was
observed to have multi-rotational retrogressive failures in parts
and large translational slides in the longer slopes [8].

Investigations into the conditions triggering landslides have
also been initiated [9–13], in order to find efficient ways to miti-
gate landslides along with their significant impacts. Common
destabilising factors include rainfall infiltration, water level rise,
and earthquakes. Site investigations on real slope failures provide
very valuable information; however, the intervals between indi-
vidual failures in a larger slide can sometimes amount to some tens
of years [14]. In most cases of real slope failures, instrumentation
of the failure and material characterisation are not undertaken.
Hence, for helping to investigate slope failure conditions in a time
efficient way, numerical modelling shows certain advantages. A
recent publication [15] compares material point method (MPM)
simulation with two real cases, although the only comparison is
the final failed slope configuration; hence there is no comparison
with any failure or propagation mechanisms, e.g. rotational or pro-
gressive failures.

This paper presents a numerical framework which is able to
simulate the whole slope failure process, from initiation, through
failure propagation, to the final equilibrium configuration. For con-
venience in benchmarking this technique, some idealised assump-
tions are made, but these can easily be changed for more site
specific analyses. The simplifying assumptions are: (a) the flow
material is a clay idealised by a linear elastic, cohesion strain soft-
ening Von Mises model; (b) the slope is assumed to be initially
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unstable under the in-situ stress condition, so that self-weight is
the trigger for the slope failure rather than any of the factors men-
tioned above; (c) no pore pressure changes are simulated. Hence, a
simple total stress approach is adopted in this paper, with the aim
of giving a clear (albeit simplified) picture of some of the main geo-
metric features of slope failure mechanisms in cohesive soils; that
is, as a prequel to future investigations involving more realistic
material and triggering scenarios. The emphasis here is to repro-
duce commonly seen clay-type slope failures [5–7] (e.g. rotational
and translational slides), and to interpret the failure mechanisms
within the proposed framework; that is, to explain the observed
translational and rotational slides through the concepts of retro-
gressive and progressive failure. Comparison of simulations to field
cases is beyond the scope of this investigation.

For modelling slope instability, traditional numerical tools such
as the finite element method are often limited in their applicability
to problems involving large deformations, due to potential exces-
sive mesh distortions that can occur in such cases. This can give
an incomplete description of failure, in that the initial slip is con-
sidered and the ongoing sliding failure is ignored. That is, continual
changes in geometry cannot easily be simulated without extensive
re-meshing. However, by using the implicit material point method
(IMPM) [16] coupled with a cohesive softening (Von Mises type)
constitutive model, the process of retrogressive failure in an
undrained soft clay under self-weight loading is possible, as will
be demonstrated herein. For this purpose, two types of slope are
analysed, which, for convenience, are called ‘‘short slope” (slope
height = 5.0 m) and ‘‘long slope” (down-slope length � 25.0 m).
The factors influencing the post-failure and retrogressive failure
behaviours of the two slopes have been investigated. For the long
slope, different slope angles are considered, to investigate the link
between slope geometry and the various failure mechanism
categories.

2. Implicit material point method

MPM has proven to be a useful finite element method (FEM)
variant for simulating large-strain problems in geotechnical appli-
cations [17–20], with the material points representing the contin-
uum being capable of moving through a background mesh, thereby
removing the limitation of excessive mesh distortions that can
occur in FEM. The implicit material point method (IMPM) here
refers to an MPM framework where the governing equation is
solved implicitly, which can be used for both quasi-static and
dynamic analyses. It addresses time step size limitations, which
are an inherent problem in explicit dynamics, and can thus reduce
the computational cost in many cases. The full details of IMPM can
be found in Wang et al. [16], with the focus of this paper being ret-
rogressive failure mechanisms. However, the essential features of
the method and governing equations are briefly presented below.

The two major differences between MPM and FEM are that: (a)
MPM uses two types of discretisation; and (b) within each compu-
tational cycle (i.e. loading/time step), the material points function
as the integration points instead of traditional Gaussian points.
The two types of discretisation, as shown in Fig. 1, are: (a) a back-
ground mesh, which is used for the computation and can be reset
regularly to avoid the mesh distortions; and (b) a set of material
points, which represent the material, store all the state variables
and are allowed to move freely through the mesh. Hence no state
variables are stored on the nodes, and a connectivity therefore
needs to be set up between the material points and the background
mesh. This is so that the information can be mapped to the back-
ground mesh before each loading/time step, for initialising the
computation, and then mapped back to the material points after
the loading/time step so that the background mesh can be reset.

2.1. Formulation

As in an updated Lagrangian FEM formulation, the equilibrium
of the continuum at time t þ Dt is to be solved, by assuming that
equilibrium has been attained at time t. Starting from the mass
and momentum conservations at the continuum scale, and apply-
ing the principle of virtual displacement, followed by the use of the
divergence theorem, the governing equation in the weak form at
time t þ Dt isZ
VtþDt

rtþDt � r � dutþDtdV ¼
Z
VtþDt

btþDt � dutþDtdV þ
Z
StþDt

stþDt

� dutþDtdS ð1Þ
where r is the Cauchy stress, b is the body force due to, for example,
gravity, s denotes the prescribed part of the traction on the surface
S, V is the volume of the body and du represents the virtual displace-
ment. For large deformation analysis, the Jaumann stress rate and
velocity strain tensors have been adopted [22].

The integrals of the weak form are easily converted to the sums
of quantities evaluated at the material points. Details can be found
in Wang et al. [16] and Guilkey and Weiss [23]. The final equilib-
rium equation can then be expressed in matrix form as,

KtDu ¼ RtþDt � Ft
int ð2Þ

where Kt ¼ Kt
L þ Kt

NL taking into account the large strain deforma-

tion, Du is the vector of incremental nodal displacements, RtþDt is
the external loading accounting for both traction and body loads
on the continuum and Ft

int is the internal force.
As an example, the linear elastic stiffness at time t is expressed

as,

Kt
L ¼

X
p

BT
L ðxpÞCpBLðxpÞ

� �
Vp ð3Þ

where BL is the matrix of shape function spatial differentials, Cp is
the stress–strain relationship which is traced on each individual
material point, xp are the coordinates of a material point, Vp is the
volume associated with a material point, and subscript p refers to
a material point. The non-linear part of the stiffness term is
expressed in a similar manner [16].

A dynamic solution can be readily obtained by adding an iner-
tial term in Eq. (2), to give

KtDuþMtatþDt ¼ RtþDt � Ft
int ð4Þ

where M is the mass matrix and a is the acceleration. The following
relationship between the kinetic variables is also assumed [24]:

vtþDt ¼ vt þ ½ð1� dÞat þ datþDt �Dt ð5Þ

utþDt ¼ ut þ vtDt þ 1
2
� a

� �
at þ aatþDt

� �
Dt2 ð6Þ

O
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Fig. 1. Spatial discretisations in MPM, in which the superscript ‘‘0” represents the
continuum initial state, and ‘‘1” stands for the deformed state; the background
mesh is used for the computation step (after Sulsky et al. [21]).
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