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Direct Monte Carlo simulation for the reliability analysis of slope stability with spatially variable soil
properties suffers from a serious lack of efficiency when the probability of failure, p;, is low (e.g.,
pr < 1075). Based on the multiple response surfaces and Subset simulation, this paper proposes an
efficient approach for the estimating of small probabilities of slope failure in spatially variable soils. An

improved Cholesky decomposition technique is presented for the simulation of the globally
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non-stationary random fields of spatially variable soil properties in the multiple soil layers. Two slope
examples are investigated to demonstrate the effectiveness of the proposed method. The efficiency of
the proposed approach for parametric sensitivity analysis is also highlighted.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

It is widely recognized that soil properties vary spatially even
within homogeneous layers due to depositional and post-
depositional processes [43,25,38]. The spatial variability of soil
properties has been widely accounted for in slope stability analy-
sis. For example, Griffiths and Fenton [16] proposed a random
finite-element method (RFEM) to investigate the effect of spatial
variability of undrained shear strength on the probability of slope
failure. Wang et al. [44] performed slope stability analysis consid-
ering spatially variable undrained shear strength using Subset sim-
ulation (SS). Ji et al. [20] proposed an EXCEL based first order
reliability method (FORM) to analyze slope reliability in the pres-
ence of spatially varying shear strength parameters. Jha and Ching
[19] employed a random finite element analysis (RFEA) to study
the effect of spatial variation in the shear strength on the stability
of undrained engineered slopes. Jiang et al. [22] applied a non-
intrusive stochastic finite element method (NISFEM) to slope reli-
ability analysis in spatially variable soils. Li et al. [28] developed
a multiple response-surface method for probabilistic analysis to
explore the influence of autocorrelation structure in the soil
properties on the slope reliability. Additionally, many authors
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quantified the effect of the spatial variation in soil properties on
the slope stability using direct Monte Carlo Simulation (MCS)
[7,8,17,39,31,23,29].

It can be observed that significant advances have been made in
the reliability analysis of soil slopes considering the spatial vari-
ability of soil properties. Table 1 summarizes the reliability analy-
ses of soil slopes in spatially variable soils. These references are
listed in a chronological order. It can be seen that the slope reliabil-
ity problems with the probabilities of failure less than 10~* have
been rarely considered. It is well known that real probability of
failure for safety—critical technical structures is often in the order
of 104-10"° during the lifetime, or as low as 10~ during one hour
of operation [36,42]. In addition, the geometry of the slopes consid-
ered is very small as shown in Table 1. The height for the majority
of slopes is less than 10 m. As reported in Jha and Ching [19], the
height of many engineered slopes is larger than 10 m. Thus it is
of significance to investigate the slope reliability problems involv-
ing relatively large slope geometries. For the slopes with relatively
large geometries, a large number of random variables shall be dis-
cretized to guarantee the accuracy of random fields simulation
[5,22], thereby resulting in high dimensional slope reliability prob-
lems. Theoretically, the direct MCS can be used for solving the
high-dimensional slope reliability problems, but it could be really
time-consuming especially when the probability of failure is low
(e.g., pr < 107°).

This study proposes to integrate multiple response surfaces
with Subset simulation for the estimating of small probabilities
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Table 1
Summary of slope reliability analyses in spatially variable soils.

Paper ID Authors Slope height (m) Reliability analysis methods Probability levels
1 Li and Lumb [32] 10 FOSM 1078-1073
2 Griffiths and Fenton [16] 10 RFEM 107!

3 Cho [7] 10 MCS 1075-1073
4 Suchomel and Masin [41] 17 FOSM 107!
5 Cho [8] 5,10 MCS 103
6 Huang et al. [17] 10 MCS 10!
7 Wang et al. [44] 10 Subset simulation 1073
8 Jietal. [20] 5,10 FORM 1073
9 Jha and Ching [19] 10 RFEA 104-10""

10 Jiang et al. [22] 5 NISFEM 104-10""

11 Salgado and Kim [39] 5.48, 5.78, 8.48, 4.35 MCS 1074

12 Li and Chu [31] 6 Surrogate model based-MCS 103

13 Jiang et al. [23] 5,10 Surrogate model based-MCS 1074-1072

14 Li et al. [29] 14.1 Surrogate model based-MCS 1073-107"

of failure in the limit-equilibrium analysis of slope stability with
spatially variable soil properties. The effectiveness of the proposed
approach is demonstrated using two examples, a two-layered
cohesive slope and a real four-layered slope with heights of 24 m
and 14.1 m, respectively. To achieve such a goal, the paper is orga-
nized as follows. In Section 2, the proposed approach comprising of
the construction of multiple response surfaces, simulation of glob-
ally non-stationary random fields and estimating of small probabil-
ities of failure is presented and implemented step by step. In
Section 3, reliability analysis of two slope examples is carried out
to illustrate the proposed approach. Finally, several conclusions
are drawn from this study.

2. Multiple response-surface based Subset simulation approach
2.1. Construction of multiple response surfaces

The crucial step for reliability analysis of slope stability in the
limit equilibrium framework is to search the critical slip surface
and determine the corresponding minimum factor of safety (FSyn).
This is not easy when the spatial variability of soil properties is
considered because the critical slip surface with the FS.;, varies
spatially which may induce numerous failure mechanisms existing
in the slope [44]. Generally, the FSy,, can be determined via deter-
ministic slope stability analyses, but it is time-consuming for com-
plex slope stability problems where the FSy,;, cannot be expressed
explicitly as a function of input parameters. To reduce the compu-
tational cost, surrogate models such as response surface, Kriging
and support vector machine are often adopted to construct the
explicit function between the FS.;, and input parameters (e.g.,
[45,49,47,46]). In this study, a quadratic polynomial without cross
terms is used to establish the response surface between the factor
of safety for each potential slip surface and input random variables.
For instance, the j-th quadratic polynomial-based response surface
is expressed as follows [45,47,31,28]:

N n n
FSi(X) = aij¥i(X) = arj+ Y biXi+ > cijX; (1)
i=1 i=1 i=1

where FS;(X),j=1, 2, ..., Np, is the factor of safety for the j-th poten-
tial slip surface, N, is the number of potential slip surfaces;
X = (X;y,...,X;,...,X,)" is the vector of input random variables in
the physical space corresponding to those used to discretize the
random fields; n is the number of input random variables which
relates with that of random field elements (see Section 2.2);
a; = (a1j,b1j,...,buj,Crj,...,Caj)" is the vector of unknown coeffi-
cients with a size of N. =2n+1; ¥;;(-) is a quadratic polynomial
expansion.

A sample design method using (2n + 1) combinations proposed
by Bucher and Bourgund [3] is then employed to determine
the unknown coefficients in Eq. (1). The factor of safety for the
j-th potential slip surface, j=1,2,...,N,, is first evaluated at
N:.=2n+1 samples which are generated at the centroid of

each random field element as below: {,ux] Y 7,Mxn}7
{,ux1 izgxwﬂxza“wﬂx,,}v e {ﬂxl:ﬂxzs“w“xi :l:ZO'x,,...,,an}.
..., and {,“xl s My, T Zaxn}; Uy, and gy, are the mean value

and standard deviation of the i-th variable, respectively. In this
way, a system of N, linear algebraic equations can be established
for the selected samples in terms of the unknown coefficients a;.
Then, the unknown coefficients a; are obtained by solving the sys-
tem of equations directly. After that, a quadratic polynomial-based
response surface is constructed for the j-th potential slip surface.
Applying the similar method, multiple quadratic polynomial-
based response surfaces (MQRSs) can be obtained and taken as
the surrogate models of explicit functions between the factors of
safety for N, potential slip surfaces and the input random variables.
Note that the obtained MQRSs do not involve the realizations of
random fields, thus not rely on the statistics (e.g., mean, coefficient
of variation, COV, and marginal distribution) of the soil properties.
After that, the performance function for slope reliability analysis
can be derived as follows:

G(X) = FSmin(X) — 1.0 = {rZIinN FSJ(X) -1.0 (2)
j=1,

where minj_;,_ n,FS;(X) is the minimum value of the MQRSs for
factors of safety at a given realization of random fields in the phys-
ical space. In this way, the values of G(X) in slope reliability analysis
can be directly obtained by substituting the realizations of random
fields into Eqgs. (1) and (2), without performing deterministic slope
stability analyses again. Therefore, the computational efficiency for
determining the values of the FS,;, and G(X) at each realization of
random fields is greatly improved.

2.2. Simulation of globally non-stationary random fields

A random field is called stationary or weakly stationary if the
following conditions are jointly met [43,38,39,6,28]: (1) the mean
and variance are the same at every point within the field. (2) an
autocorrelation function governs the degree of correlation between
the residuals of any two points in the domain, which depends only
on the distance between any two points within the random field
not on absolute locations. (3) the probability density function for
samples of the same size is independent of the absolute locations.
However, the random fields of soil properties in geotechnical prac-
tice often cannot jointly meet the above mentioned conditions. For
instance, the means and standard deviations of soil parameters
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