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a b s t r a c t

The development of a two-surface elastic–plastic bounding surface P–Y model for cyclic lateral pile
motions is described. The kinematic-hardening model is applicable to the analysis of pile foundations
subjected to loading with arbitrary azimuths relative to the pile axis. The model realistically captures
the hysteretic energy damping associated with dynamic loading of subsea foundations through physically
correct plastic mechanisms and provides results consistent with those observed in physical tests includ-
ing cyclic loading. Its performance is demonstrated in element states of stress and in pile foundation
analyses. The development based on the incremental theory of plasticity results in more robust solutions
than may be obtained using alternative elastic, variable moduli and deformation plasticity formulations.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The development of an elastic–plastic bounding surface P–Y
(BSPY) model for three dimensional pile response simulation is
presented for an undrained cohesive soil. The work builds on a pre-
vious model development for planar motions [1]. The model
response includes a viscous component to characterize rate effects
and small amplitude damping. The ability to adequately reproduce
the soil hysteretic response is the motivation for development of
the model. Its implementation through the concepts of work-
hardening plasticity results in numerically stable solutions for
arbitrary load paths.

The BSPY model is implemented in an overlay fashion [2] with
two components: an elastic–plastic bounding surface component,
and a viscous component. The model can be calibrated to replicate
the response of traditional P–Y models used for monotonic loading
in cohesive soils. Experimental [3], numerical [4] and limit analysis
[5] studies imply that the traditional industry P–Ymodels for cohe-
sive soils likely underestimate the strength and stiffness of soil
resistance to lateral pile motions. The BSPY model offers the flexi-
bility to account for alternative characteristics of the lateral soil
resistance to monotonic and cyclic load responses. The model per-
formance is illustrated for both element conditions and in finite
element applications. Its characteristic responses are compared
to responses observed in physical tests with cyclic loading.

2. BSPY model components

The bounding surface implementation follows the theoretical
formulation presented by Dafalias and Popov [6,7], Dafalias and
Herrmann [8] and Krieg [9]. The concept is presented in two-
dimensional form in Fig. 1a. Fig. 1b shows the form of the model
viscous component. The two components are paired in an overlay
model formulation. The bounding surface model includes two
kinematic hardening surfaces, a yield surface defining an elastic
zone and a ‘bounding surface’, as well as a perfectly-plastic limiting
strength surface. The combination of the two kinematic surfaces
allows representation of cyclic Bauschinger effects. In the follow-
ing, the model is sometimes described in terms of ‘stress’ and
‘strain’, although in reality it is implemented in terms of displace-
ment and a resistance in force/length. The descriptions are meant
to be interchangeable.

The aforementioned authors produced bounding surface mod-
els with a range of features and applications (metals and soils) with
kinematic and mixed-hardening surfaces. The model here is for-
mulated in the conventional manner for incremental plasticity
models and the implementation closely follows that described by
Krieg [9] for metals with respect to the rules regarding surface
translation. The two-dimensional form results in some simplifica-
tions compared to a six-dimensional stress space. The incremental
elastic–plastic stiffness Cep relating the resistance dP and the dis-
placement dy is of the form

dP ¼ Cep � dy ð1Þ
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The elastic stiffness C in the model is isotropic with the
response in the two orthogonal directions uncoupled

C ¼ E � I ð2Þ
where E is the elastic stiffness and I is a 2 � 2 identity matrix. The
plastic kinematic surfaces in two dimensions have the form

f n ¼ ðP �/nÞ � ðP �/nÞ � j2
n ¼ 0; n ¼ 0;1 ð3Þ

where jn is the radius of the surface, P are the stresses, and /n are
hardening parameters representing the center of the surfaces. The
translation of the yield surface is governed by a hardening modulus
dependent on the distance d between the stress point on the yield
surface f0 and an image point on the bounding surface f1, and is
along the unit vector l between the two points. The image point
on the bounding surface is that with the same normal direction as
the loading point on the yield surface. When loading is on the
bounding surface, the direction of translation is normal to the
bounding surface and both surfaces translate together. Associated
flow rules are used so that the plastic deformations are in the direc-
tion of the normal to the loading surface. The elastic–plastic stiff-
ness is then

Cep ¼ C � C @f
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In Eq. (4), f and j are those associated with the outermost surface fn
on which loading is occurring. The denominator of Eq. (4) takes
advantage of the fact @f/@a = �@f/@P, according to the mathematical
form of the surfaces in Eq. (3), otherwise the first term of the
denominator would include a partial derivative with respect to a
in place of the partial derivative with respect to P. The plastic con-
stitutive response results in a stress-induced anisotropic behavior
where the stiffness and resistance in two orthogonal directions
are coupled through the plastic constitutive relationship. The plastic
hardening modulus Hm can be defined with some flexibility, for
example

Hm ¼ f ðH0;H1; d; ypÞ ð5Þ
whereH0 andH1 are the hardeningmoduli for the yield and bounding

surfaces, respectively, yp ¼ R
dyp, dyp are the incremental plastic dis-

placements, and dyp ¼ ðdyp � dypÞ1=2. The dependency of the material
hardening on the plastic history allows for a degradation of observed
elastic–plastic stiffness as a result of cyclic loading. In the present
case, the plastic hardening modulus is reduced by a factor Fm

Fm ¼ 1� F1ð1� expð�ypF2ÞÞ ð6Þ

where F1 and F2 are model parameters. The BSPY hardening
response is of course a phenomenological simplification of the
actual soil response, which is likely associated with pore pressure
build-up and migration of stress paths to states more susceptible
to plastic deformation (e.g., [8,10]). Such responses are not neces-
sarily associated with material softening and may be, at least par-
tially, recoverable.

The specific form of Hm adopted here is

Hm ¼ ðH0
�dþ H1Þ � Fm; �d ¼ d=ð2j1 � dÞ ð7Þ

where j1 is the radius of the bounding surface. When d = 0, Hm is
directly proportional to the outer surface value, and when d is large
the plastic modulus increases and the constitutive response tends
toward the elastic response. The restriction here is that
2j1 � d > 0, which implies the radius of the yield surface is non-
zero. The magnitude �amax of the maximum excursion of the bound-
ing surface center /1 from the origin of the stress space is limited so
that the stress space origin is contained within the bounding sur-
face. The limiting excursion combined with the fixed radius of the
bounding surface gives the ultimate resistance of the model, which
in effect is a third surface Pu in the model (Fig. 1). The translation of
surfaces are governed by a hardening rule of the form

da ¼ Hbdyp ð8Þ
When loading is on the yield surface, da0 is computed with

H = Hm, b = l is as described above, and da1 is computed with
H = FmH1 with b normal to the image point on the bounding sur-
face. When loading is on the bounding surface, both surfaces are
in contact and translate together, with H = Hm (note d = 0) and b
is normal to the bounding surface. If loading reaches the limiting
surface Pu, then the response of the model during further loading
is according to its perfectly plastic response and the hardening
parameters /n of the kinematic surfaces are updated to result in
a unique gradient direction for all three surfaces at the point of
loading.

The linear viscous component (Fig. 1b) provides a convenient
mechanism accounting for viscous damping at small displace-
ments. Proper selection of the model components might account
for a rate stiffening effect, but care should be taken that the results
are reasonable. The formulation adopted is that described by Silva
[11], which requires the definition of a viscous stiffness Evisc and a
viscous damping parameter g. The total BSPY resistance PTOT
including the response described by the bounding surface stress
P and the viscous component PV is then

PTOT ¼ P þ PV ð9Þ

Fig. 1. BSPY model; (a) yield and bounding surfaces, (b) viscous component.
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