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a b s t r a c t

Many geotechnical structures are built on sandy soils. This complex medium exhibits a non-associated
rate-independent behaviour. Owing to this pattern, local and global tangent operators become non-
symmetric. Consequently, it has been proved that instabilities and failure may develop before reaching
the classic failure limit given by a plasticity limit. A proper analysis with the second-order work criterion
allows for a good description of these instabilities and can be used as a good failure criterion. In this
paper, we review the main results obtained in the last few decades when this criterion was applied to
homogeneous problems. Then, a numerical integration of this quantity and a method for its normaliza-
tion are proposed. The results of this integration lead to the definition of a safety factor for a global struc-
ture even under non-homogeneous conditions. Finally, an application to the design of a nailed wall is
proposed. In this framework, a constitutive model that gathers the main basic features of soil behaviour
was developed. This model allows a given soil to be described with only one set of parameters, for exam-
ple from a loose to a dense state or from a normally consolidated to an over-consolidated state. This fea-
ture is useful for taking into account initial states or for observing a change in the main behaviour due to a
large change in the confining loading conditions.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we propose a method for analysing the stability of
the equilibrium state of geomechanical systems. In most engineer-
ing applications, the behaviour of the soil can be described within
the framework of elasto-plasticity theory. In the cases where the
dimensions of the problems are sufficiently large, a classic finite
element formulation can be used, but a complex constitutive
model is required for the description of the behaviour of the soil.
In this context, the failure of such systems is generally described
with the help of a limit stress state or equivalently with a plasticity
limit. Nevertheless, experimental evidence has shown that the
failure of homogeneous samples of soils may occur strictly within
the classic plasticity limit of Mohr–Coulomb [1–4]. In the last few
decades, numerous studies have proved that Hill’s stability
criterion [5] describes these experimental facts properly [6–8].
Nevertheless, these works deal with homogeneous problems. In

this article, we first review studies of the second-order work crite-
rion from the works carried out in the last decade. This criterion is
the local form under the small-strain assumption of Hill’s criterion.
Next, a numerical procedure is proposed for computing the
second-order work over a whole volume, using a classic finite ele-
ment formulation. A normalization of this quantity is proposed in
order to use it as a safety factor to describe the failure of the sys-
tem. Finally, an application to the design of a nailed wall is put for-
ward. In this application, a constitutive model using the classic
concepts of elasto-plasticity and gathering the main features of soil
behaviour was developed. This model enables the description of a
given soil with only one set of parameters whatever its density or
consolidation state. This feature can be useful for describing the
initial stress state of a problem or for describing complex physics,
when large changes in confining stress occur during a particular
loading path.

2. Background of the second-order work criterion

When considering an elasto-plastic medium subjected to dead
loads on part of its surface and rigidly constrained on the remain-
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der, Hill [5] proved that a sufficient condition for stability of this
medium is given by the following relationship in a Lagrangian
formalism:Z

dsijd
@uj

@Xi

� �� �
dV0 > 0 ð1Þ

for any displacement du. In Eq. (1), the notations of the original
paper have been kept; sij are the components of the nominal stress
tensor, which is the transposed form of the non-symmetric Piolat-
Lagrange (or identically Boussinesq) stress tensor; dsij is the change
of sij due to the arbitrary virtual displacement du. The integral on
the elementary volume, is the sum of the inner quantity over the
loading path between the initial configuration and the next
infinitesimal configuration. The term on the left-hand side of the
inequality is the amount of the internal work increment along the
infinitesimal path. When it is positive, it means that the internal
work of the medium is smaller than the external work applied. Con-
sequently, this sufficient condition matches Lyapunov’s definition
of the stability of a system [9,6]. In the case of equilibrium states,
this definition states that the response of the system remains
bounded after a small disturbance. In fact when condition (1) is vio-
lated, internal and external works can be unbalanced and a defor-
mation process can continue without any addition of external work.

In more recent works, Nicot [10] showed the link between the
violation of condition (1) and an increase of the kinetic energy of
the medium from a zero value. In the following expressions,
rij; njdS, and xj are, respectively, the components of the Cauchy
stress tensor, the unit external surface vector and the position vec-
tor in the actual configuration, while, NidS0, and Xi are respectively
the components of the unit external surface vector and the position
vector in the initial configuration. Starting from a derivative of the
kinetic energy theorem

dEcðtÞ ¼
Z
C
rijnjduidS�

Z
V
rij

@ðduiÞ
@xj

� �
dV ð2Þ

and a second-order Taylor development of the kinetic energy func-
tion with respect to time,

Ecðt þ dtÞ ¼ EcðtÞ þ _EcðtÞDt þ €EcðtÞ Dtð Þ2
2

þ o Dtð Þ3 ð3Þ

Nicot showed the following relationship:

2Ecðt þ dtÞ ¼
Z
C0

dsijNidujdS0 �
Z
V0
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This expression is only valid under the assumption that the
sample is at equilibrium at time t, and that the kinetic energy
function is at least of C1 class. Thus, EcðtÞ ¼ _EcðtÞ ¼ 0, and deriva-
tives of the internal and external powers are directly linked to
Ecðt þ dtÞ. Between t and t þ dt, the system dynamically evolves
only if Ecðt þ dtÞ > 0. Under Hill’s assumption, that the sample
is subjected to dead loads on part of its surface and that kine-
matically fixed conditions are imposed on the rest of its surface,
the term

R
C0

dsjiNjduidS0 is zero. Under this last condition we

obtain:

2Ecðt þ dtÞ ¼ �
Z
V0
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Consequently, when Hill’s condition is violated, the kinetic
energy of the system can evolve with a second-order rate with
respect to time. We must not forget that Hill’s condition is suffi-
cient but not necessary to get a ‘‘burst” of kinetic energy. Physical
conditions to get this ‘‘burst” are reviewed in the next sections.

We will now study the second-order work:

w2 ¼ dr : de ð6Þ

This quantity represents the inner term in expression (1) when
small strains and small geometrical changes are assumed, which
is generally the case in engineering applications. dr is the Cauchy
stress tensor and de the linearised strain tensor. When considering
homogeneous problems, Hill’s condition becomes:

w2 ¼ dr : de > 0 ð7Þ
Using notations where symmetric second-order tensors of

strain and stress are written as a six-component vector, Eq. (7)
can be written as follows:

w2 ¼ tdr N ~d
� �

dr > 0 ð8Þ

with N ~d
� �

the rate-independent constitutive operator which links

de to dr and t the transposed operator. This operator depends on

the loading direction ~d ¼ dr=kdrk. In classical elasto-plastic mod-
els, this operator is piecewise linear in the stress rate space. We
denote by tensorial zone a part of the stress rate space in which

N ~d
� �

is linear, that is to say independent from ~d. In such a tensorial

zone, the following equation:

w2 ¼ tdr N dr ¼ 0 () tdr Ns dr ¼ 0 ð9Þ

is the general equation of an elliptical cone. Ns denotes the symmet-

ric part of N. In the principal stress rate space, the solutions of Eq.
(9) depend on eigenvalues of Ns and are geometrically similar to

the form displayed in Fig. 1 [11]. It is worth noting that the solu-
tions of Eq. (9) appear in the order given in Fig. 1 along a given load-
ing path. First, the solution of Eq. (9) is empty, because the soil
sample is fully stable, then a unique unstable loading direction
develops, and cones of unstable loading directions grow until the
plasticity limit. The last mathematical solution given by the inter-
section of two planes has never been observed with our models.
In fact it is the degenerate form of an elliptical cone with an infinite
large axis. When a solution exists, loading paths included inside or
on the cone are unstable, while other loading paths are stable. An
illustration of such cones is displayed in Fig. 2. This result was
obtained with Darve’s octo-linear model [12], whose general form
is given by:

de1
de2
de3
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Nþ is the tangent orthotropic matrix with respect to incremental
loading, while N� is the tangent orthotropic matrix with respect
to incremental unloading. Such a model does not use classical
assumptions of elasto-plasticity and in particular the assumption
of splitting strain into an elastic and a plastic part. This model has
been derived from a second-order Taylor expansion of the relation

Nð~dÞ dr. This Taylor expansion first leads to the expression of
Darve’s incrementally non linear model (INL2) [12] and with further
simplifications can lead to the octo-linear model.

The set of stress points where the solution of Eq. (9) is reduced
to only one unstable direction is called the bifurcation domain limit.
This limit is located inside the plasticity limit. Theoretically, this
limit could depend on the loading path. Nevertheless, it is possible
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