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a b s t r a c t

Two-dimensional laminar flow of power-law fluids past a long square cylinder confined in a planar
channel is investigated numerically for the range of conditions as 60 ≤ Re ≤ 160, 0.5 ≤ n ≤ 1.8 and
ˇ = 1/6,1/4, and 1/2. A semi-explicit finite volume method is used on a non-uniform collocated grid
arrangement. The third order QUICK scheme and the second-order central difference scheme are used to
discretize the convective and diffusive terms respectively. Depending upon the value of blockage ratio,
power-law index and Reynolds number, the nature of flow in the above range of conditions is either
steady or unsteady (periodic in time). An increase in the blockage ratio delays the onset of vortex shed-
ding to higher Reynolds number in both shear-thinning and shear-thickening fluids whereas it advances
the occurrence of the quasi-periodicity in flow to lower Reynolds numbers in shear-thinning fluids. Exten-
sive numerical results are presented to elucidate the effects of blockage, power-law index and Reynolds
number on the drag coefficient, stream function, vorticity, Strouhal number and amplitudes of drag and
lift coefficients in the unsteady flow regime.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The flow of fluids past cylinders of different cross-sections (cir-
cular, square, elliptic for instance) is a classical problem within the
domain of fluid mechanics. Such model studies have received impe-
tus from both theoretical considerations such as to advance our
understanding of the wake phenomena and vortex shedding, etc.
as well as pragmatic considerations such as reliable prediction of
time-averaged hydrodynamics forces (lift and drag coefficients) is
needed in numerous instances. For instance, the flow over a long
cylinder is encountered in tubular and pin type heat exchangers,
thermal processing of food stuffs like potato and carrot chips, etc.
Bluff bodies of various shapes are also used as flow dividers to from
weldlines in polymer forming operations. Consequently, over the
years, a voluminous body of knowledge has accrued on the flow
of Newtonian fluids past cylinders of various cross sections. The
bulk of the literature pertains to circular cylinders, followed by
that for square, elliptic and rectangular cylinders. Most of the lit-
erature up to 2003 is thoroughly reviewed in the two-volume set
of Zadravkovich [1,2] whereas the literature pertaining to the vor-
tex shedding has been summarised by Williamson [3]. Indeed, even
for the simplest shape of a circular cylinder which is free from geo-
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metrical singularities, the flow exhibits a rich variety of phenomena
depending upon the nature of the mainstream flow (uniform shear,
confined/unconfined for instance), type of fluid (Newtonian or non-
Newtonian), aspect ratio of the cylinder (length to diameter ratio)
and the characteristic Reynolds number of the flow. Even for the
simplest case of the unconfined uniform flow of Newtonian fluids
past an infinitely long circular cylinder, depending upon the value
of the Reynolds number, the flow can be 2D steady without separa-
tion, 2D steady with separation, 2D unsteady with laminar vortex
shedding, to become turbulent and 3D as the Reynolds number is
progressively increased. Due to the inherently different nature of
the underlying physical processes, global parameters like drag and
lift coefficient, Nusselt number, etc. scale differently with Reynolds
number in each flow regime. Furthermore, the transitional value as
well as scaling is also influenced by the type of the fluid, severity of
confinement, end effects, and nature of the far flow field [1,2,4]. All
in all, adequate information is now available over the range of inter-
est for Newtonian fluid flow past a circular cylinder. A reasonable
body of knowledge (experimental and numerical) is also available
for Newtonian fluid flow past a cylinder of square cross-section
in unconfined configuration [5–15], and for a confined cylinder
[16–21]. Broadly, currently available results encompass the laminar
vortex shedding regime. Similarly, a limited body of information is
also available for cylinders of elliptic cross-section, e.g., see [22,23].

Many multiphase and polymeric materials encountered in
numerous industrial settings (especially in food and pharmaceu-
tical, polymer and process engineering applications) display a
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Fig. 1. Schematics of the flow around a square cylinder confined in a channel.

range of non-Newtonian characteristics including shear-thinning,
shear-thickening, visco-elasticity, yield stress, etc. [24]. Perhaps the
commonest non-Newtonian characteristic is of shear-dependent
viscosity which is frequently approximated using the simple
power-law fluid model. A few studies are available on the flow of
power-law fluids past a circular cylinder, most of which pertain to
the steady flow regime; all of these have been summarized recently
[25,26]. Even fewer studies are available on the flow of power-law
fluids past an unconfined square cylinder [25–28]. There have been
only two studies of the effect of planar confinement on momentum
characteristics of a square cylinder immersed in power-law fluids
which are briefly described here. This problem has been initially
investigated by Gupta et al. [29] for a single value of the block-
age ratio (ˇ = 1/8) over the range of conditions as 5 ≤ Re ≤ 40, 5 ≤
Pe ≤ 400 and 0.5 ≤ n ≤ 1.4. Later on, Dhiman et al. [30] extended
this work to three different blockage ratios (ˇ = 1/8, 1/6 and 1/4)
over a wider range of conditions with relatively finer grids than
used by Gupta et al. [29]. Subsequently Dhiman [31] extended this
work to study forced convective heat transfer from a square cylin-
der to shear-thickening fluids (n > 1) for a single blockage ratio
of 1/8. Thus very little information is available in the literature on
the effect of blockage for the flow of power-law fluids past a square
cylinder, especially beyond the steady flow regime. This study aims
to explore the effects of blockage ratio,ˇ, and the power-law index,
n, on the flow across a confined square cylinder in the unsteady
flow regime. In particular, numerical results are presented here for
the following ranges of conditions: 0.5 ≤ n ≤ 1.8,ˇ = 1/6,1/4,and
1/2 and 60 ≤ Re ≤ 160. However, similar to our previous work here
also, depending upon the value of both the power-law index (n < 1)
and blockage ratio (ˇ), the maximum value of the Reynolds number
is chosen such that the flow is truly fully periodic in time.

2. Problem statement and mathematical formulation

The physical problem considered in this study is the flow of an
incompressible power-law fluid around a square cylinder placed
symmetrically in a horizontal channel (height h and length L) as
shown schematically in Fig. 1. The flow is assumed to be unsteady,
2D and laminar, and the inlet velocity profile is assumed to be fully
developed. The ratio of the size of the cylinder,B, to the height of the
channel,H, defines the blockage ratio,ˇ. The blockage ratio is varied
by changing the height of the channel,H. The choice of the upstream
length Lu and the downstream length Ld are based on previous
studies [20,30]. In the governing equations, the space coordinates,
velocities, time, pressure and viscosity are rendered dimensionless
by using the size of square cylinder (B), the maximum velocity at
channel inlet (umax), the characteristic time (B/umax), the character-

istic pressure �u2
max and the characteristic viscositym

(
umax/B

)n−1

respectively. For an incompressible, 2D and laminar flow, the inte-
gral forms of the continuity, the x- and y-components of Cauchy’s
equation in their dimensionless form are given below.

Continuity:∫
S

V · dS = 0 (1)

x-Momentum:

∂

∂t

∫
�

ud�+
∫
S

uV · dS = −
∫
S

pî · dS + 2
Re

∫
S

(��iiî+ ��ij ĵ) · dS

(2)

y-Momentum:

∂

∂t

∫
�

vd�+
∫
S

vV · dS = −
∫
S

pĵ · dS + 2
Re

∫
S

(��jiî+ ��jj ĵ) · dS

(3)

where the dimensionless Reynolds number is defined as

Re = Bnu(2−n)
max �

m
(4)

Herem and n are the constants of the power-law viscosity model. In
Eqs. (2) and (3), dS is given by n̂s dS (n̂s is the unit normal vector to
the surface dS) and î, ĵ are the unit vectors in the x- and y-directions,
respectively. For an incompressible fluid, the components of the
extra stress tensor are related to the components of the rate of
deformation tensor, � as

�ij = 2��ij (5)

where �ij = (1/2)(∂jVi + ∂iVj). The non-Newtonian viscosity
behaviour of the fluid is modeled here by the power law model.
This model expresses the apparent viscosity �′(�̇ ′) (ratio of shear
stress to shear rate) as a function of the shear rate (�̇ ′) as follows:

�′ = m�̇ ′(n−1) (6)

where m and n are the power-law consistency index and flow
behaviour index respectively. Finally, the nondimensional power-
law viscosity is calculated as follows:

� = (2�ij · �ji)(n−1)/2 (7)

The boundary conditions (dimensionless) for this flow are written
as follows:

• At inlet, the flow is assumed to be fully developed, i.e.,

u =
(

1 −
∣∣(1 − 2ˇy)

∣∣(n+1)/n
)

(8)

• At upper and lower channel walls, the usual no-slip condition is
prescribed, i.e.,

u = 0, v = 0 (9)

• On the surface of the square cylinder, the no-slip condition is
used, i.e.,

u = 0, v = 0 (10)

• At the exit boundary, the Orlanski condition [32] is employed
which is expressed as

∂	

∂t
+ Uc ∂	

∂x
= 0 (11)

where Uc (the area average outflow velocity) is assumed to be
unity here and 	 is a dependent variable, u or v.

The numerical solution of Eqs. (1)–(3) along with the above-
noted boundary conditions maps the flow domain 0 ≤ x ≤ Lu + Ld
and 0 ≤ y ≤ H in terms of the velocity and pressure fields which
are further used to obtain the global characteristics like drag and
lift coefficient and Strouhal number as well as the values of the
stream function and vorticity as follows:
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