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An implicit material point method (MPM), a variant of the finite element method (FEM), is presented in
this paper. The key feature of MPM is that the spatial discretisation uses a set of material points, which
are allowed to move freely through the background mesh. All history-dependent variables are tracked on
the material points and these material points are used as integration points similar to the Gaussian
points. A mapping and re-mapping algorithm is employed, to allow the state variables and other infor-
mation to be mapped back and forth between the material points and background mesh nodes during
an analysis. In contrast to an explicit time integration scheme utilised by most researchers, an implicit
time integration scheme has been utilised here. The advantages of such an approach are twofold: firstly,
it addresses the limitation of the time step size inherent in explicit integration schemes, thereby
potentially saving significant computational costs for certain types of problems; secondly, it enables an
improved algorithm accuracy, which is important for some constitutive behaviours, such as elasto-
plasticity. The main purpose of this paper is to provide a unified MPM framework, in which both
quasi-static and dynamic analyses can be solved, and to demonstrate the model behaviour. The imple-
mentation closely follows standard FEM approaches, where possible, to allow easy conversion of other
FEM codes. Newton’s method is used to solve the equation of motion for both cases, while the formation
of the mass matrix and the required updating of the kinematic variables are unique to the dynamic anal-
ysis. Comparisons with an Updated Lagrangian FEM and an explicit MPM code are made with respect to
the algorithmic accuracy and time step size in a couple of representative examples, which helps to illus-
trate the relative performance and advantages of the implicit MPM. A geotechnical application is then
considered, illustrating the capabilities of the proposed method when applied in the geotechnical field.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
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1. Introduction geotechnical analysis, including the modelling of retaining wall

failure [4], anchor pull-out [9], soil column collapse [10,11], land-

The material point method (MPM) has been shown to be a
robust spatial discretisation method for simulating multi-phase
interactions involving large deformations and failure evolution.
During 1994-96, Sulsky et al. [1-3] first developed and applied
the method for modelling solid materials. This led to researchers,
from different fields, recognising the potential of the method
and adapting it to various applications, e.g. silo discharge and
plastic forming [4,5], explosion problems, exploiting its ability to
represent an arbitrary geometry [6,7], large-scale response of
cellular constructs in biomechanics [8], and, more recently, for
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slides and debris flows [12], landslide induced interactions with
structures [13], and quasi-static analyses of slope stability [14,15].

MPM uses two spatial discretisations, the first one that discre-
tises a continuum body with a set of material points carrying all
the state variables, and the second one that discretises the back-
ground grid (a computational mesh) to solve the equations of
motion. The computational mesh may be maintained in its original
position, or it can be adjusted in an appropriate way to avoid mesh
distortion after each time/loading step, thereby removing the dis-
advantage of the finite element method (FEM) for which extreme
mesh distortion may occur due to large deformations. As with
FEM, the time integration of MPM can be either implicit or explicit,
in which the latter has been employed for most of the MPM devel-
opments so far. This paper is concerned with the implementation
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of an implicit MPM framework, and the validation of the resulting
implicit solver, as well as with comparisons with an explicit MPM
with respect to the time step size and accuracy of the results. In
this paper, the term implicit MPM refers to a framework where
both dynamic and quasi-static problems (with inertial terms
neglected) can be solved effectively. Although implicit dynamic
MPM formulations [16,17] have been reported, this paper aims to
provide a clear and straightforward description of all the necessary
techniques for adapting an existing FEM implementation into one
based on the implicit MPM.

In the remaining sections of the paper, the theoretical formula-
tion is first presented. This closely follows the standard FEM proce-
dure, thereby clearly demonstrating the similarities between MPM
and FEM. Implementation details are then discussed, where a spe-
cial treatment for MPM is needed. The subsequent section focuses
on a series of representative examples to investigate and validate
the presented framework for quasi-static and dynamic analyses,
respectively, with the results being compared with those obtained
from an explicit code, in order to gain a thorough understanding of
how the implicit algorithm behaves.

2. Theoretical formulation of the implicit material point
method

2.1. General framework

To describe the implicit MPM, Fig. 1 demonstrates the standard
mapping and remapping procedure between the material points
and background computational mesh. In the first phase (Fig. 1(a))
the state variables are mapped from the material points to the
nodes of the background mesh; in the second phase (Fig. 1(b)),
the equation of motion is solved over the background mesh to find
the current acceleration, with the element integration being based
on the material points (rather than on the information mapped to
Gauss points); and, in the third phase (Fig. 1(c)), the state variables
on the material points are updated via remapping from the
deformed background mesh, and the mesh is then reset, leaving
the material points at their updated locations. These phases are
repeated until the end of the time/loading steps.

Connectivity can be set up between the material points and
background grid nodes, and thus information can be mapped back
and forth between them. Due to the different ways that may be
adopted for solving the equation of motion in time in the second
phase, the formulation can yield either implicit or explicit MPM
approaches.

2.2. Continuum equations

At the continuum scale, the governing differential equations
under purely mechanical loading can be derived from the respec-
tive conservation equations for mass and momentum,
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supplemented with a suitable constitutive equation to describe the
stress-strain relation. In Egs. (1) and (2), p is the mass density, v is
the velocity, ¢ is the Cauchy stress, and b is the body force due to,
for example, gravity.

The mass of a given material point is independent of time, and
hence Eq. (1) is automatically satisfied. For Eq. (2), a derivation
based on the static equilibrium between the internal force, repre-
sented by o, and external force, represented by b, is introduced
first for simplicity, i.e.

V.6+b=0 (3)

By applying the principle of virtual displacement, followed by
the use of the divergence theorem, the equilibrium equation
expressed in the weak form [ 18] with respect to the current config-
uration, at time ¢+ At, is given by
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where S is the second Piola-Kirchhoff stress tensor, d¢ is the Green-
Lagrange strain tensor, du represents the virtual displacement, ©
denotes the prescribed part of the traction on the surface S and
the volume of the body is represented by V.

Using the last known configuration at time t as a reference, the
stress can be decomposed into the incremental form,

S —=S'+ A6 =6' + Ao (5)

whereas the strain at time t + At, with respect to the time t, is actu-
ally the incremental strain &+ = Ag. The incremental strain is then
divided into two parts; a linear part as commonly used in small
strain analysis, plus a high order term, i.e. A¢ = Ae + An, in which
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where u is the incremental displacement.

By substituting Egs. (5) and (6) into the weak formulation (4)
and assuming, for the moment, that the loading is deformation
independent, then, by expressing the right hand side of Eq. (4) as
F.'A which is the external loading accounting for the effects of
both body loads and tractions, and neglecting the high order term
Jur Ao - 5An, the small strain equation of motion in the Updated

Lagrangian (UL) formulation is obtained as,
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Fig. 1. Computational cycle of MPM (after Sulsky and Schreyer [3]).
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