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a b s t r a c t

This paper is concerned with the vibration isolation efficiency analysis of total or partially buried thin
walled wave barriers in poroelastic soils. A two-dimensional time harmonic model that treats soils and
structures in a direct way by combining appropriately the conventional Boundary Element Method
(BEM), the Dual BEM (DBEM) and the Finite Element Method (FEM) is developed to this aim. The wave
barriers are impinged by Rayleigh waves obtained from Biot’s poroelasticity equations assuming a per-
meable free-surface. The suitability of the proposed model is justified by comparison with available pre-
vious results. The vibration isolation efficiency of three kinds of wave barriers (open trench, simple wall,
open trench-wall) in poroelastic soils is studied by varying their geometry, the soil properties and the fre-
quency. It is found that the efficiency of these wave barriers behaves similarly to these in elastic soils,
except for high porosities and small dissipation coefficients. The efficiency of open trench-wall barriers
can be evaluated neglecting their walls if they are typical sheet piles. This does not happen with walls
of bigger cross-sections, leading in general to efficiency losses. Likewise, increasing the burial depth to
trench depth ratio has a negative impact on the efficiency.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The vibrations induced by machinery or vehicles can travel
through the soil to nearby constructions, which can annoy people
or cause the malfunction of devices located inside of these. In order
to reduce the vibrations, a wave barrier can be installed at a point
of the transmission path. The design of each vibration isolation sys-
tem depends on the source of vibrations, the properties of the
transmission path, and the isolation requirements. An open trench
is a very efficient system because its stress-free boundaries act as
perfect reflectors of elastic waves. Its efficiency greatly depends
on the ratio between the Rayleigh wavelength and the trench
depth. However, for soil stability reasons, especially in water satu-
rated soils, a pure open trench cannot be excavated to any desired
depth. Thus, other systems such as in-filled trenches, or the instal-
lation of sheet piles or rows of piles, are often used. Another option
is reinforcing the open trench by installing retaining sheet piles or
concrete walls on both sides of the trench. This type of wave
barrier is called an open trench-wall.

There exist a vast literature about the design and analysis of
wave barriers. Before the numerical computing era, only experi-
mental studies were performed in order to assess these problems,
where the works by Barkan [1] andWoods [2] blazed a trail. Nowa-
days, analytical, semi-analytical and numerical methods, mainly
the Boundary Element Method (BEM), are being used, although
experimental methods are still being used to confirm and/or para-
metrize mathematical models, e.g. [3]. Three kinds of wave barriers
in elastic soils have been extensively studied: open and in-filled
trenches, and rows of piles. The open and in-filled trenches have
been studied through two-dimensional BEM models by Emad
et al. [4], Beskos et al. [5,6], and even formulas for a simplified
design have been given by Ahmad et al. [7]. They were studied in
three-dimensional problems using BEM models by Banerjee et al.
[8] and Dasgupta et al. [9]. The vibration isolation produced by
rows of piles have been studied by Avilés et al. [10] analytically,
and by Kattis et al. [11] using a three-dimensional BEM model.
The open trench-wall systems have been rarely studied, to the
authors’ knowledge only Tsai et al. [12] using a two-dimensional
multidomain BEM model. When compared with elastic soils, much
less works dealing with the efficiency of wave barriers in poroelas-
tic soils exist. Cai et al. [13,14] and Xu et al. [15] studied the
isolation efficiency of rows of piles in poroelastic soils using

http://dx.doi.org/10.1016/j.compgeo.2015.08.007
0266-352X/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +34 928457404.
E-mail address: jdrodriguez@iusiani.ulpgc.es (J.D.R. Bordón).

Computers and Geotechnics 71 (2016) 168–179

Contents lists available at ScienceDirect

Computers and Geotechnics

journal homepage: www.elsevier .com/ locate/compgeo

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compgeo.2015.08.007&domain=pdf
http://dx.doi.org/10.1016/j.compgeo.2015.08.007
mailto:jdrodriguez@iusiani.ulpgc.es
http://dx.doi.org/10.1016/j.compgeo.2015.08.007
http://www.sciencedirect.com/science/journal/0266352X
http://www.elsevier.com/locate/compgeo


semi-analytical methods, and Cao et al. [16] did the same for open
trenches under a moving load. As it is seen, the BEM has been
widely applied to study these types of problems because of its
own capability to deal with unbounded regions. The Finite Element
Method (FEM) has been used also, but mainly in combination with
the BEM, being the FEM used for structural parts of the problem.
Among other coupled BEM–FEM models used in this field, those
developed for the study of the isolation of vibrations produced
by moving loads (trains) are of great interest nowadays. To this
end, the models developed by Andersen et al. [17] and François
et al. [18] are great exponents.

The aim of this paper is twofold. Firstly, to present a two-
dimensional BEM–FEM dynamic model for soil-structure interac-
tion analyses, where the structures are thin, and one or both of
their faces can interact with the surrounding media. The initial idea
of this model for fluid–structure analyses has already been pre-
sented [19]. Here, the model is expanded by considering a Biot’s
poroelastic surrounding medium. Secondly, to apply the proposed
model to study a problem of interest where there are clear advan-
tages of its use: the efficiency of thin walled wave barriers buried
in this medium. For this study, three kinds of wave barriers are
considered: open trench, simple barrier (thin in-filled trench),
and open trench-wall; which are impinged by a Rayleigh incident
wave field assuming a permeable free-surface.

The rest of the paper is organized as follows. The Biot’s poroe-
lasticity model is briefly described in Section 2.1. In Section 2.2,
the Rayleigh waves on a permeable free-surface are discussed for
this model. In Section 2.3, the conventional BEM and the Dual
BEM for the Biot’s poroelasticity are presented. The soil-structure
coupling conditions are described in Section 2.4. In Section 3.1,
results obtained from the proposed model are compared with pub-
lished results. In Section 3.2, a study of the previously mentioned
wave barriers under incident Rayleigh waves is presented.

2. Methodology

2.1. Biot’s poroelasticity

A very general representation of soils can be done by the Biot’s
poroelasticity model [20]. This model is able to represent a two-
phase medium consisting of a solid frame saturated by a fluid.
Let ui and sij be the displacements and stresses of the solid phase,
Ui and s the displacements and equivalent stress of the fluid phase,
and i; j 2 1;2½ �. The governing equations in the time domain can be
written as:

l$2uþ $ N $ � uð Þ þ Q $ � Uð Þ½ � þ X ¼ q11
€uþ q12

€Uþ b _u� _U
� �

ð1Þ

$ Q $ � uð Þ þ R $ � Uð Þ½ � þ X0 ¼ q12€uþ q22
€U� b _u� _U

� �
ð2Þ

and the stress–strain relationships as:

sij ¼ dij kþ Q2=R
� �

$ � uð Þ þ Q $ � Uð Þ
h i

þ l ui;j þ uj;i
� � ð3Þ

s ¼ Q $ � uð Þ þ R $ � Uð Þ ð4Þ

where N ¼ kþ lþ Q2=R, X and X0 are the body forces of the solid
and fluid phases, respectively, k and l are the Lamé’s parameters
of the solid phase, Q and R are the Biot’s coupling parameters, b is
the dissipation constant, and q11 ¼ ð1� /Þqs þ qa;q12 ¼ �qa;

q22 ¼ /qf þ qa, being / the porosity, qs the solid phase density, qf

the fluid phase density, and qa the additional aparent density. In
the following, in order to avoid confusion, the subscripts 1 and 2

are used to denote solid phase and fluid phase variables, respec-
tively, while x; y are used to denote coordinates.

Using the Helmholtz decomposition:

ux ¼ @u1

@x
þ @w1

@y
; uy ¼ @u1

@y
� @w1

@x

Ux ¼ @u2

@x
þ @w2

@y
; Uy ¼ @u2

@y
� @w2

@x

ð5Þ

and considering null body forces, two decoupled sets of two equa-
tions are obtained from Eqs. (1) and (2):

u1;u2
N þ lð Þ$2u1 þ Q$2u2 ¼ q11 €u1 þ q12 €u2 þ b _u1 � _u2ð Þ ðaÞ
Q$2u1 þ R$2u2 ¼ q12 €u1 þ q22 €u2 � b _u1 � _u2ð Þ ðbÞ

(

ð6Þ

w1;w2

l$2w1 ¼ q11
€w1 þ q12

€w2 þ b _w1 � _w2

� �
ðaÞ

0 ¼ q12
€w1 þ q22

€w2 � b _w1 � _w2

� �
ðbÞ

8><
>: ð7Þ

The first set is related with a rotational-free (P) displacement field
due to scalar potentials u1 and u2, and the second set with a
divergence-free (S) displacement field due to scalar potentials w1

and w2. In the time harmonic regime, these equations lead to the
three well known bulk modes of wave propagation in Biot’s poroe-
lasticity. Onwards, the circular frequency is denoted as x, and the
assumed time harmonic term is expðixtÞ, which is omitted for brev-
ity. If only the time harmonic potentials ui ¼ Pi expð�ikPxÞ are con-
sidered, then the bulk P mode is obtained from:

P1; P2

x2q̂11 � k2P N þ lð Þ
h i

P1 þ x2q̂12 � k2PQ
h i

P2 ¼ 0 ðaÞ

x2q̂12 � k2PQ
h i

P1 þ x2q̂22 � k2PR
h i

P2 ¼ 0 ðbÞ

8><
>: ð8Þ

where q̂11 ¼ q11 � ib=x; q̂22 ¼ q22 � ib=x and q̂12 ¼ q12 þ ib=x. The
wavenumbers kP are obtained from its characteristic equation:

kP ¼ � 1ffiffi
2

p a1 � a21 � 4a0
� �1=2� �1=2

; a0 ¼ x4 q̂11q̂22 � q̂2
12

R kþ 2lð Þ

a1 ¼ x2 q̂22

R
þ q̂11 þ q̂22Q

2=R2 � q̂122Q=R
kþ 2l

 ! ð9Þ

where two of the solutions are relevant incoming waves
(ReðkPÞ > 0). Hence, two P modes exist: the wavenumber associated
with the fastest wave speed is kP1, while the wavenumber associ-
ated with the slowest wave speed is kP2. If only the time harmonic
potentials wi ¼ Si expð�ikSxÞ are considered, then the bulk S mode is
obtained from:

S1; S2
x2q̂11 � k2Sl
h i

S1 þx2q̂12S2 ¼ 0 ðaÞ
x2q̂12S1 þx2q̂22S2 ¼ 0 ðbÞ

8<
: ð10Þ

and the wavenumber kS is obtained from its characteristic equation:

kS ¼ �x q̂11 � q̂2
12=q̂22

l

� �1=2

ð11Þ

where only one solution is a relevant incoming wave (ReðkSÞ > 0).

2.2. Rayleigh waves on a permeable free-surface

The Rayleigh waves are surface waves that exist when a half-
space is in contact with the vacuum through its free-surface. For
a half-space y � 0, three different cases can be considered at the
free-surface y ¼ 0: permeable (sijnj ¼ 0; s ¼ 0), impermeable
(sij þ sdijÞnj ¼ 0; ðUj � ujÞnj ¼ 0) or partially permeable. In this
paper, only the permeable case is considered.
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