
Research Paper

Numerical modelling of multiphase flow in unsaturated deforming
porous media

J. Ghorbani ⇑, M. Nazem, J.P. Carter
Australian Research Council Centre of Excellence for Geotechnical Science and Engineering, University of Newcastle, NSW 2308, Australia

a r t i c l e i n f o

Article history:
Received 1 June 2015
Received in revised form 29 September 2015
Accepted 30 September 2015

Keywords:
Unsaturated soils
Dynamic analysis
Multi-phase flow
Porous media
Finite element

a b s t r a c t

The aim of this paper is to address a number of significant challenges in the analysis of multiphase unsat-
urated soils when subjected to both static and dynamic loading. These challenges include the non-linear
behaviour of the solid skeleton of the soil as well as the means by which the unsaturated nature of the
multi-phase soil is dealt with. A review of some fundamental issues in partially saturated soils as well
as the governing equations are presented and then the application of the generalised-a algorithm for time
integration of the global equations of motion for unsaturated soils is demonstrated. Solutions to these
equations obtained by the finite element method are validated by recently presented analytical solutions.
A description of the selected constitutive model and its integration is also presented, together with a
strategy to verify the numerical implementation. Finally, solutions for the classic problem of static load-
ing of a rigid footing resting on a partially saturated (three-phase) soil and a fully saturated (two-phase)
soil are presented.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The governing equations of solid and fluid interaction were first
developed for quasi-static situations by Biot [4], who later
extended his analysis to dynamic problems [5]. The subsequent
introduction of ‘mixture’ theory by Truesdell [77] and improve-
ments to this theory by researchers, such as Barden et al. [3],
Bowen [9], Green and Naghdi [24], paved the way for the establish-
ment of a new basis for the Thermo-Hydro-Mechanical–Chemical
analysis of porous media, allowing for the existence of multiphase
pore fluids. This made it possible to incorporate some advanced
features of multi-phase material response, including phase
changes, chemical reactions, and behaviour under a non-isothermal
environment, into the analysis of porous media.

The extension of Biot’s theory to include the numerical analysis
of saturated soils under dynamic loading was presented by
Zienkiewicz and Shiomi [88], and later extensions for partially sat-
urated soils were presented by Li et al. [43] and Li and Zienkiewicz
[45]. In these extensions it was assumed that no phase transfer and
no chemical reactions were possible during the fluid flows. This
kind of flow through porous media is called ‘‘immiscible flow”,
and is the subject of this paper.

In recent decades numerical modelling of multiphase flow in
deforming porous media has received increasing attention in

various areas of engineering, such as biomechanics and geotech-
nics. The so-called mixture theory has mostly been employed as
the main framework for analysing problems involving thermo-
hydro-mechanical and even chemical coupling in porous media.
Partially saturated soils can be viewed as a subclass of this type
of problem, since they are characterised by the simultaneous
deformation of a porous soil, and its pore water and pore air.
However, partially saturated soils usually exhibit more complex
behaviour than some other porous materials, as they often experi-
ence non-linear plastic (irrecoverable) deformation. This makes
their computational modelling more complicated than for some
other coupled problems. The selection of a consistent constitutive
model within the theory of mixtures, that can incorporate suction
forces into the description of stress, provides a further complica-
tion. The necessity of such incorporation has frequently been
reported in experimental studies of unsaturated soils. This requires
the adoption of a unique strategy for integration of the constitutive
model for these soils. Another challenge in modelling unsaturated
soil as a three-phase material arises in solving the global equations
of motion, where the presence of both non-saturated and saturated
phases, together with the existence of inertia forces in each phase,
makes the solution of the coupled dynamic system computation-
ally demanding.

The aim of this paper is to address the aforementioned chal-
lenges. A review of some fundamental issues in partially saturated
soils is presented and then the application of the generalised-a
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algorithm for time integration of the global equations of motion for
unsaturated soils is demonstrated. Solutions to these equations
obtained by the finite element method are validated by recently
presented analytical solutions. A description of the selected
constitutive model and its integration is also presented, together
with a strategy to verify the numerical implementation. Finally,
solutions for the classic problem of static loading of a rigid footing
resting on a partially saturated (three-phase) soil and a fully
saturated (two-phase) soil are presented.

2. Governing equations

2.1. Volume fraction and effective density

It is assumed that the medium under consideration is composed
of three phases, including solid (s), liquid (w), and gas (g) phases.
These phases are continuously distributed throughout space. The
degree of saturation, S, and the partial density of each phase q
are obtained from

Sb ¼ Vb

Vv ðb ¼ w; gÞ ð1Þ

qa ¼ Ma

V
ða ¼ s;w; gÞ ð2Þ

where V represent the volume and M is the mass. This gives the
average density of the mixture, q, as:

q ¼ 1� nð Þqs þ nSwqw þ nSgqg ð3Þ
where n is the porosity.

2.2. Average effective stress concept in unsaturated soils

During the last seven decades, the concept of ‘effective stress’
has remained an extremely debatable topic in the analysis of
fluid-saturated porous materials. It is also considered as perhaps
the first contributor to the study of such materials due to its unique
capability to extend the available constitutive models for saturated
soils to partially fluid-filled geomaterials, e.g., Khalili et al. [33],
Sheng [67,68], Vlahinić et al. [79]. Several researchers have
independently published similar definitions of the effective stress
for partially saturated materials, such as Alonso et al. [2],
Hassanizadeh and Gray [25], Jennings [29], Khalili and Khabbaz
[35], Lambe [38], Richards [59].

The single effective stress method emerged following the
proposition by Bishop [6] and is similar to that adopted for fully
saturated conditions. Bishop proposed the following equation for
the effective stress in partially saturated soils:

r0
ij ¼ rij � padij

� �þ v pa � pwð Þdij ð4Þ
where r0

ij is the effective stress, rij represents the total stress, pa

denotes the pore air pressure, pw is the pore water pressure, v is
called the effective stress parameter or Bishop’s parameter, ranging
from 0 to 1 for dry and saturated conditions, respectively, and dij is
the Kronecker delta. The term ðrij � padijÞ in Eq. (4) is commonly
called the net stress, and pa � pw represents the matric suction, also
known as the capillary pressure.

A popular form of Eq. (4) that was introduced by Lewis and
Schrefler [40] is achieved by assuming that the Bishop parameter,
v is identical to the degree of saturation, Sw, so that

r0
ij ¼ rij � pgdij

� �þ Swðpg � pwÞdij ð5Þ
A review on the concept of effective stress and the proposed

methods of for defining it for unsaturated soils are also presented
in Khalili et al. [33]. The application of an alternative effective

stress and its role in global system of equations of unsaturated soils
is also shown in the work of Khalili et al. [34]. Moreover,
investigation on Biot’s coefficient in partially saturated media
and unsaturated stress tensors by using thermodynamically
constrained averaging theory is also presented in the works of Gray
and Schrefler [21], Gray et al. [22,23].

Houlsby [27] described r0
ij defined in Eq. (5) as the ‘‘average soil

skeleton stress” tensor. This representation of effective stress can
also be found in Bolzon et al. [7], Ehlers et al. [15], Hutter et al.
[28], Jommi [30], Lewis and Schrefler [41], Nuth and Laloui [56],
Oka et al. [57], Tamagnini [75], Wheeler et al. [80], with different
names adopted, such as ‘‘skeleton stress”. This definition is consis-
tent with multiphase mixture theory.

In this paper Eq. (5) is selected to define the average effective r0
ij

in the mechanics of partially saturated porous media. By also
incorporating the Biot parameter, a, Eq. (5) becomes:

r0
ij ¼ rij � a � pave � dij ð6Þ

where pave denotes the mean pore pressure exerted by the fluid
phase(s) on the solid grains, and is obtained by the averaging tech-
nique proposed by Gray and Hassanizadeh [20], Houlsby [27],
according to:

pave ¼ Sw � pw þ Sg � pg ð7Þ
Substituting the capillary pressure, pc , into Eq. (7) gives:

pave ¼ pw þ ð1� SwÞ � pc ð8Þ
The Biot coefficient, a, is described by the relationship:

a ¼ 1� Kt

Ks
6 1 ð9Þ

where Kt is the bulk modulus of the porous medium and Ks is the
bulk modulus of the solid grains.

2.3. Conservation of mass and momentum balance

According to the principle of conservation of mass, inside an
arbitrary volume V, mass cannot be eliminated or increased unless
there is an outward or inward flow of materials, respectively. A
flow of each phase ða ¼ s;w; gÞ through a surface dC can be
described as qana � Va � n � dC, where n is the normal unit vector
of the surface, qa is the partial mass density of each material,
and Va is the velocity of the material. Also na ¼ Xa

X represents the
volume fraction of each phase in the mixture with Xa and X as
occupied volume by each phase and total volume of the mixture,
respectively.

In its integral form, the principle of mass conservation is
written as

@

dt

Z
X
qanadX ¼ �

I
C
qana � Va � n � dC ð10Þ

By applying the Gauss theorem, the conservation of mass can be
written in the form of a differential equation as follows

@ðqanaÞ
@t

þ @ qanaV
a
i

� �
@xi

¼ 0 ð11Þ

Considering Vs ¼ _u for solid phase and porosity as n ¼ nw þ ng , the
following expression for the conservation of mass for solid phase
can be obtained as:

@ðð1� nÞqsÞ
@t

þ @ðð1� nÞqs _uiÞ
@xi

¼ 0 ð12Þ

Assuming @ðRiÞ
@xi

¼ Ri;i and @qs
@xi

¼ 0 the following equation is

obtained from expanding the equation above:
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