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a b s t r a c t

In this work, the rectilinear flow of a complex liquid under a pulsating, time-dependent pressure
gradient is analyzed. The fluctuating component of the pressure gradient is assumed to be of small
amplitude and can be adequately represented by a weakly stochastic process, for which a quasi-static
perturbation solution scheme is suggested. The pulsating pressure-gradient flow is analyzed with the
Bautista–Manero–Puig model (BMP) constitutive equation, consisting in the upper convected Maxwell
equation coupled to a kinetic equation to account for the breakdown and reformation of the fluid struc-
ture. According to the BMP model, thixotropy was found to have a negative effect on the energy associated
to the maximum flow enhancement and reflects the relationship among the kinetic, viscous and struc-
tural mechanisms in the system. The flow enhancement is a function of the square of the amplitude of
the oscillations, the Reynolds and Weissenberg numbers, and it is also dependent on the dimensionless
numbers representing the viscoelastic, kinetic and structural mechanisms. Finally, flow enhancement is
predicted in an aqueous worm-like micellar solution of cetyltrimethyl ammonium tosilate (CTAT) for
various concentrations.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The analysis of the oscillating pressure gradient flow of New-
tonian and non-Newtonian fluids has attracted ample interest due
to several applications, among them, in bio-fluid mechanics [1–3],
biorheology, enhanced oil recovery and others. In biorheology,
examples are the flow of blood in veins which is forced by a periodic
pressure gradient [4–10] and interesting manifestations of biologi-
cal fluid flow such as the flow of spider silk [11–13]. From a practical
point of view, pulsatile flow of complex liquids (worm-like micellar
systems and lyotropic liquid crystals) has applications in enhanced
oil recovery. Likewise, pulsating and oscillating flows are impor-
tant in the industrial applications such as polymer extrusion using
oscillatory dies. The effect of the oscillations on the heat transfer
and their interplay with inertia and viscous dissipation in non-
Newtonian fluids, such as the dependency of the bulk temperature
on frequency and amplitude of the oscillations, has been reported
[14–21]. In addition, the use of pulsations has also been of interest
in connection with heat, turbulent heat, mass transfer and coating
processes [22–24].

Constitutive equations that take into account build-up and
break-down kinetics of a complex fluid structure have been used
to model several complex systems [25]. Complex fluids include
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biological fluids such as polypeptides, cellulose, and composites,
that often exhibit crystalline order, anisotropy and viscoelastic-
ity. They incorporate sequences of self-assembly, structural, kinetic
processes under flow and mass transfer [26]. The characterization
of these phenomena has been studied at length by several authors
[27–31].

Likewise, viscoelastic surfactants have been used as rheologi-
cal modifiers in coating process and also in enhanced oil recovery
operations, especially those related to underground formations.
The extraction of additional amounts of oil can be achieved by
hydraulically inducting fractures in the rock formations [32]. Vis-
coelastic surfactants are characterized by entangled network of
large worm-like micelle structures. These structures break and
reform during flow, exhibiting a rich rheological behavior. Predic-
tions of the flow behavior of viscoelastic surfactants by constitutive
equations have been a challenging issue [33,34]. These systems
exhibit Maxwell type behavior in small-amplitude oscillatory shear
flow and saturation of the shear stress in steady simple shear, which
leads to thixotropy and shear banding flow [35–37]. In the non-
linear viscoelastic regime, elongated micellar solutions also exhibit
remarkable features, such as the presence of a stress plateau in
steady shear flow past a critical shear rate accompanied by slow
transients to reach steady state [38,39].

Theoretical predictions using perturbation and numerical meth-
ods on viscometric flows (or nearly viscometric flows) of the flow
enhancement as a function of frequency and amplitude of oscilla-
tions have been reported [39–71], using viscous and viscoelastic
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equations of state [39–41,49,50,54,55,57–60,67–71]. In most anal-
yses, it is shown that shear-thinning causes the flow enhancement
and that this enhancement is proportional to the square of the
relative amplitude of the oscillating pressure gradient and its mag-
nitude depends strongly on the shape of the viscosity function.
The maximum in the resonance curves reported by several authors
can be explained by a coupling of the viscoelastic properties with
the macroscopic perturbed motion. Among the important quanti-
ties are the shape of the viscosity curve and the inter-relation of
the characteristic material properties of the system [54–60]. Other
important factors are the wave-form (triangular, sinusoidal, and
square type) that has a strong effect on flow enhancement and
power requirements [64,65,68–70].

Notwithstanding, there is still open questions and lack of the-
oretical and experimental studies dealing with complex fluids
and complex behaviors such as thixotropy, rheopexy and shear-
banding in pulsating and oscillating flows. They represent a test to
new constitutive equations and this aspect motivates the present
investigation. In this regard, the main objectives of this work
are:

1. Predictions of the flow enhancement and power requirement by
a pulsating time pressure gradient of a complex kinetic liquid
modelled by the Bautista–Manero–Puig (BMP) equation of state
[72–75].

2. Analysis of the thixotropy and the inter-play with the kinetic,
structural and viscoelastic properties of the fluid, through
dimensionless groups associated to each mechanism.

3. Study the effect of the surfactant concentration on thixotropy
using rheometric data of an aqueous worm-like micel-
lar solution (cetyl trimethyl ammonium tosilate) to predict
the flow enhancement for various micellar concentrations
[76].

This paper is organized as follows: Section 1 contains the intro-
duction to the problem and previous work. Section 2 discusses the
BMP model. The formulation to the problem is presented in Section
3, with the non-dimensional variables and the stochastic properties
of the random function n(t) used to describe the pulsating pres-
sure gradient. In Section 4, the perturbation solution is proposed
and analytical results are shown in Section 5. Theoretical predic-
tions of the flow enhancement using worm-like solutions data are
described in Section 6. Concluding remarks and future work are
mentioned in the last two sections.

2. Constitutive equation (the BMP model)

The BMP model [72–75] couples a time dependent equation for
the structure changes with the upper-convected Maxwell consti-
tutive equation. The evolution equation for the structural changes
was conceived to account for the kinetic process of breakage and
reformation of complex liquid and is defined by the following set
of equations:
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In Eq. (1) the stress � is a viscoelastic stress,
∇
� is the upper-

convected derivative of the stress tensor, � is the viscosity function,
D is the rate of deformation tensor, IID is the second invariant of D

and G0 is the elastic modulus. In Eq. (2) �0 and �∞ are the vis-
cosities at zero and very high shear rates, respectively, � is the

structural relaxation time and k can be interpreted as a kinetic con-
stant for the structure breakdown; all five parameters of the model
(�0, �∞, G0, �, and k) are related to the fluid properties and can
be estimated from independent rheological experiments in steady
and unsteady flows. The viscosity at lower and upper shear rates
(�0, �∞) can be estimated through experiments in steady shear
flow. The structural time and elastic modulus (G0, �) can be cal-
culated by using linear oscillatory flow. The parameter (k) can be
evaluated in stress relaxation experiments after steady shear flow
[76,77].

The BMP model was selected for this study due to its ability
to predict the thixotropic behavior of structured fluids (such as
worm-like micellar solutions, dispersions of lamellar liquid crys-
tals, bentonite suspensions and associative polymers) [72–78]. It
reproduces the flow curve of shear-thinning fluids, i.e. a Newtonian
plateau at low and high shear rates and the intermediate power law
region. Due to its simplicity, analytical solutions for complex flow
situations can be explored, as compared to other more complex
models [79–84].

3. Problem formulation

The isothermal rectilinear flow of an incompressible complex
liquid under a pulsating time-dependent pressure gradient is ana-
lyzed in a circular pipe of radius r = a and axial length z = L. Entry
and exit effects and gravitational forces are neglected. In this sys-
tem, all physical quantities in cylindrical coordinates (r, �, z) are
defined with respect to an origin at the pipe center. The axial
fluid velocity is a function of (r, t) and both the non-slip condition
(Vz(r = a, t) = 0) and symmetry of the velocity field are applied. The
pulsating pressure gradient here is represented by ∂zp(1 + εn(t)),
where n(t) is a pressure gradient noise and ε � 1 is a small
parameter.

3.1. Dimensionless variables, groups and equations

3.1.1. Non-dimensional variables
Herrera et al. [71,85] proposed the following dimensionless vari-

ables for the axial velocity, pressure gradient, time, shear-stress,
shear-rate, radial coordinate, viscosity function and frequency,
respectively
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Here, the characteristic time is � (structural build-up time). This
election of the non-dimensional variables enables the compari-
son with other characteristic times associated to a given physical
mechanism (e.g. viscoelastic, �0 = �0G−1

0 , �∞ = �∞G−1
0 and rupture

�r = k�0 times).

3.1.2. Non-dimensional groups
Using the above expressions, the dimensionless components

of the momentum equation, constitutive equations and the
flow enhancement are obtained. In addition, the following non-
dimensional groups are defined, as discussed previously by Herrera
et al. [71,85]



Download English Version:

https://daneshyari.com/en/article/671072

Download Persian Version:

https://daneshyari.com/article/671072

Daneshyari.com

https://daneshyari.com/en/article/671072
https://daneshyari.com/article/671072
https://daneshyari.com

