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a b s t r a c t

Conventional discontinuous deformation analysis (DDA) results in a change of block volume, which is
known as free expansion, during rotation calculations because of the use of a linear displacement func-
tion to simulate the behavior of a block with a rigid body and elastic behaviors. This study demonstrates
that the linear displacement function also generates unsolved elastic distortion, especially when the
block undergoes large rotation in each calculation step. The distortion disturbs the contact judgment
in the open–close iteration and update calculations of vertex coordinates, stresses, velocities, etc. at
the end of each calculation step. A new procedure follows the flow chart of the original DDA, but it adopts
additional codes for the coordinate-transformation calculations in vertex coordinate, stress, and velocity
updates. When the vertex coordinates are updated, vertex displacements caused by strains are calculated
before involving the block-rotation term in the displacement function to mitigate the elastic distortion. In
addition, new codes compile formulas to transform stresses and velocities with block rotation. The new
DDA ensures the correctness of rotating elastic calculations to solve practical falling rock problems with a
large rotational angle in each calculation step.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Discontinuous deformation analysis (DDA) is a discrete numer-
ical method [1]. Originally, two-dimensional (2D) DDA used linear
displacement function (Eq. (1)) to simulate the behavior of block i.
Open–close iteration ensures the correctness of contacts among
blocks in each calculation step. The iteration is a unique
back-analysis method in DDA to arrange the most suitable contact
spring patterns for contact computation in each calculation step.
Each contact must satisfy ‘‘No penetration’’ and ‘‘No tension.’’
When blocks penetrate each other, contact spring must be added
as no penetration. Conversely, contact spring must be deleted
when the contact exceeds the tensile strength of the discontinuity
as no tension. The value of time increment will be reduced if the
suitable spring patterns are unavailable within six iterations [1]:
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where ðu;vÞ are the displacements of an arbitrary point ðx; yÞ in the
X and Y directions, ðx0; y0Þ are the coordinates of the block centroid,
ðu0;v0Þ are the rigid-body translations, r0 is the rigid-body rotation
angle (in radians) with a rotation center at ðx0; y0Þ, (ex, ey, cxy) are the
normal and shear strains, ½Ti� is the first-order displacement func-
tion, and fDig is the vector of displacement variables.

In slope disaster mitigation, DDA is a useful tool for investigating
the failure mechanism and the impact area because it can trace the
rock trajectories and contacts with large displacements [2–4]. After
a slope fails, contacts among blocks may cause fast rotation. In addi-
tion, DDA applies an implicit solution procedure, called the
Newmark-b method for the time integration [1]. Numerically,
DDA is unconditionally stable, and it has the advantages of using
a larger time interval and fewer calculation steps than an explicit
solution procedure [5,6], such as the distinct element method [7].
Therefore, blocks in DDA may rotate largely in each calculation step.

Assume a 4 � 2-m rectangular block (Fig. 1) with the physical
properties as listed in Table 1 is investigated in this study. The neg-
ative value of the initial horizontal stress means that it is a com-
pressive stress. The initial time increment is 1.0 s. The force of
gravity is neglected to simplify the problem. The elastic deforma-
tions ðex; ey; cxyÞ of the block at each calculation step are con-
strained to (0, 0, 0) by neglecting the impacts of strains to vertex
coordinates, stress, and velocity update.
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After solving the problem shown in Fig. 1, a significant volume
change of the block due to the large rigid-body rotation angle in
each calculation step is called the free-expansion problem in orig-
inal DDA (Fig. 2). Eq. (2) is the exact solution of the elastic body
movement with rotation [8]. The expansion comes from the differ-
ence between the nonlinear rotation term, r0 (Eq. (2)), and the lin-
ear displacement function (Eq. (1)):

u ¼ u0 þ ðx� x0Þðcos r0 � 1Þ � ðy� y0Þ sin r0 þ ðx� x0Þex

þ ðy� y0Þcxy=2 ð2aÞ

v ¼ v0 þ ðx� x0Þ sin r0 þ ðy� y0Þðcos r0 � 1Þ þ ðy� y0Þey

þ ðx� x0Þcxy=2 ð2bÞ

The post-adjustment method [8,9], Taylor series method [10], and
trigonometric method [11] are techniques available to mitigate
the free-expansion problems. However, a new question arises
regarding whether the values and the directions of the stresses of
the rotating block are constant in conventional DDA. Fig. 3 shows
that the stresses of the rotating block are independent of the cumu-
lative rotation angle. The negative value in the vertical axis shown
in Fig. 3 indicates the compressive stress. This question is crucial
for DDA because a wrong stress direction disturbs the stress distri-
bution and elastic deformation of a block. Therefore, this study
focuses on discussing the mechanism of elastic distortions caused
by a large rigid-body rotation in DDA, and it proposes a new proce-
dure to mitigate the question.

2. Previous solutions

It is essential to check the correctness of applying the available
techniques to mitigate the free expansion, such as the
post-adjustment method, Taylor series method [10], and trigono-
metric method [11] to calculate the stresses as shown in Fig. 1.

2.1. Post-adjustment method

The post-adjustment method uses Eq. (2) to correct the coordi-
nates of the block after open–close iterations [8]. In addition, Koo
and Chern [9] used a similar approach to generate the rigid-body
DDA.

The unchanged values and the direction of the block stresses at
each step calculated by the post-adjustment method (Fig. 4a) are
similar to those of original DDA (Fig. 3). In addition, Fig. 4b shows
that the width, L1, and length, L2, shown in Fig. 1, are unchanged,
indicating the efficient decrease of free expansion for the
elastic-deformation constraint problem.

However, Fig. 5 shows the calculation results of rotating the
block without elastic-deformation constraints, where the (ex, ey,
cxy) after open–close iteration are no longer set as (0, 0, 0) in each
calculation step. The following abnormal phenomena are obtained
in Fig. 5, and they must be solved as follows:

(1) The area difference is defined as the subtraction block area
calculation in DDA by simplex integration [1] from
ðL1� L2). The area difference is zero when the block is rect-
angular (Fig. 1). Assume L2 is the base. When the rectangle
deforms to a parallelogram, the area difference is positive
because L1 is longer than the height. The variation of the
positive area difference at each calculation step (Fig. 5a)
implies a block distortion in DDA.

(2) The width of the block, L1, shown in Fig. 1, vibrates (Fig. 5b)
although the horizontal stress is the unique initial stress for
the rotating block calculations, and Poisson’s ratio is
assumed to be 0.0.
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Fig. 1. Geometry of the rectangular block.

Table 1
Physical parameters of the 2D case study.

Item Value Item Value

Block density, q (g/cm3) 2.4 Initial horizontal stress
(kPa)

�103

Young’s modulus, E (MPa) 100 Initial vertical stress
(kPa)

0.0

Poisson’s ratio, t 0.0 Initial shear stress (kPa) 0.0
Initial angular velocity, x (rad/s) p/2 Time increment (s) 1.0

0 400 800 1200 1600
Cumulative rotation angle (o)

-2000

-1000

0

1000

2000

St
re

ss
 (k

Pa
)

Original DDA
Horizontal Stress
Vertical Stress
Shear Stress

Fig. 3. Stresses calculated by original DDA.
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Fig. 2. Free expansion phenomena in original DDA.
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