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a b s t r a c t

Although numerical models have been widely used in the geotechnical profession, their applications for
reliability analysis are still rather limited mainly because most geotechnical numerical programs lack the
probabilistic function. In this study, an efficient response surface method is suggested for geotechnical
reliability analysis using existing numerical programs. The developed approach can effectively avoid
the occurrence of negative values for positive random parameters, and thus it solves the key limitation
of the classical response surface method in geotechnical applications. To facilitate its application, a pro-
cedure is designed for automating reliability analysis with the commercially available program, FLAC3D.
The developed method and procedure are demonstrated in detail using a slope example. The versatility of
the suggested procedure is illustrated through the serviceability reliability analysis of a soft ground
improved with deep mixing columns. For the reinforced ground studied in this paper, the reliability is
mainly governed by the uncertainties in Young’s moduli of the soil and reinforced columns. The sug-
gested method can be conveniently used for reliability-based design of deep mixing columns.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

To assess the effect of uncertainties on geotechnical predictions,
reliability methods are increasingly being adopted in geotechnical
engineering (e.g., Refs. [1,2]). Several geotechnical design codes
have been developed based on the reliability theory (e.g., Refs.
[3–5]). Probably because most geotechnical numerical programs
do not have the probabilistic analysis function, the applications
of reliability methods are still limited to problems with relatively
simple limit state functions. Compared with the wide application
of numerical models in geotechnical engineering, the lack of ability
for reliability analysis based on numerical models greatly limits
the value of reliability analysis in geotechnical engineering. How
to implement reliability analysis utilising sophisticated geotechni-
cal numerical models has been one of the key challenges for the
application of reliability methods in geotechnical engineering.

Efforts have been dedicated to the development of specific
numerical programs capable of geotechnical reliability analysis
(e.g., Refs. [6,7]). Such programs can profoundly facilitate the appli-
cations of reliability methods for complex geotechnical problems.

However, developing such numerical programs requires expertise
in both geotechnical numerical analysis and geotechnical reliabil-
ity. In this regard, response surface methods (RSM) as alternatives
are adopted for complex geotechnical reliability problems, in
which the reliability analysis is realised through the computation-
ally efficient models that approximate the deterministic numerical
solutions (e.g., Refs. [8–15]). Among the RSM available, the itera-
tive method suggested by Bucher and Bourgund [16] based on
the first-order reliability method (FORM) is shown to be quite effi-
cient and thus commonly used in various fields (e.g., Refs. [17–22]).
The method by Bucher and Bourgund [16] is termed the classical
RSM in this paper. As will be shown subsequently in this study,
the classical RSM may be subjected to serious convergence difficul-
ties and may not be suitable for geotechnical applications.

The objective of this paper is to suggest an efficient and robust
RSM for geotechnical reliability analysis that can overcome the
convergence difficulty of classical RSM. This method can automate
reliability analysis using commercial geotechnical programs such
as FLAC3D [23]. As such, the suggested method can profoundly
extend the capability of the profession for reliability analysis of
complex geotechnical problems. The structure of this paper is as
follows: First, FORM is reviewed and the limitation of the classical
RSM is discussed. Then, a modified RSM is introduced to deal with
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the limitation of the classical RSM. Thereafter, a procedure for
automating geotechnical reliability analysis using FLAC3D based
on the suggested RSM is described. Finally, the applicability and
effectiveness of the suggested method are illustrated through the
serviceability reliability analysis of a soft ground reinforced with
deep mixed (DM) columns.

2. First-order reliability method (FORM)

Let x denote the uncertain variables in the performance func-
tion g(x) with g(x) < 0 indicating failure. Various methods such as
FORM (e.g., Ref. [24]) and Monte Carlo simulation (e.g., Ref. [25])
are available for the estimation of failure probability, defined as
the probability of g(x) < 0. Although Monte Carlo simulation is
one of the most flexible and versatile approaches, its application
is often challenged by the considerable computational work
involved. For comparison, as FORM is reasonably accurate and also
computationally efficient, it is applicable to a large number of prac-
tical problems and widely used in practice [26]. In this paper, the
focus is on geotechnical reliability analysis using solutions of
numerical models, and FORM is employed to achieve computa-
tional efficiency. With FORM, the failure probability (pf) is calcu-
lated as follows (e.g., Ref. [24]):

pf ¼ 1�UðbÞ ð1Þ

b ¼ min
gðxÞ¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yR�1yT

q
ð2Þ

where U = cumulative distribution function (CDF) of the standard
normal variable, b = reliability index, y = reduced variables of x,
and R = correlation matrix of the random variables.

FORM can be efficiently executed in a spreadsheet when the
limit state function has an explicit form [24]. When the explicit
solution of a problem is not available and it has to be evaluated
with a stand-alone numerical program, the implementation of
FORM is challenging due to the coupling between the numerical
program and FORM. To deal with such a challenge, Bucher and
Bourgund [16] suggested a FORM-based RSM for conducting relia-
bility analysis based on computationally expensive deterministic
models, which is now widely employed in various fields. As men-
tioned previously, the method suggested by Bucher and
Bourgund [16] is termed the classical RMS in this study.

3. Classical RSM and its limitation

The classical RSM approximates the performance function g(x)
by a second-order polynomial function:

gðxÞ � b0 þ
Xk

i¼1

bixi þ
Xk

i¼1

bkþix2
i ð3Þ

where xi = the ith element of x, k = dimension of x, and bi

(i = 0,1, . . .,2k) = unknown deterministic coefficients. To determine
the (2k + 1) unknown coefficients, the performance function can
be first evaluated around a centre point xc = {xc1,xc2, . . . ,xck} and
other 2k points around xc: {xc1 ± mrx1,xc2, . . . ,xck}, {xc1,xc2 ± mrx2, -
. . . ,xck}, . . . , and {xc1,xc2, . . . ,xck ± mrxk}, where m is a parameter
determining the relative distance of the calibration points and
rxi = standard deviation of xi. Equating the values of the perfor-
mance function with those calculated using Eq. (3) at the prescribed
(2k + 1) calibration points, the unknown coefficients can then be
solved.

After the second-order polynomial function is established, the
reliability index can be calculated with Eq. (3) instead of the
numerical model. Let xD denote the design point found based on
Eq. (3) using FORM. When the performance function is not well

approximated by Eq. (3), xD computed by Eq. (3) may not be close
to the design point of the actual performance function. In such a
case, the response surface needs to be updated with a new set of
calibration points around a new centre point determined using
the following equation:

xc ¼ lx � gðlxÞ
lx � xD

gðlxÞ � gðxDÞ
ð4Þ

where lx = mean of x. Through the updating given by Eq. (4), the
sampling points are expected to move closer to the limit state func-
tion g(x) = 0, indicating a more accurate search for the design point.
With the new response surface (Eq. (3) with updated coefficients),
the reliability index can be recalculated. This updating procedure
is iterated until the resulting FORM reliability index does not
change within a tolerable error eb such as eb = 0.01.

The above RMS has extensive applications in many fields (e.g.,
Refs. [17–22]). When determining the calibration points in the clas-
sical RSM, however, negative values may occur for positive random
variables [21]. Such a phenomenon often occurs when the coeffi-
cient of variation (COV) of the random variables is large or when
the failure probability is small. In geotechnical engineering, many
random variables, such as the cohesion and the friction angle, are
non-negative engineering properties. In addition, the uncertainties
involved in geotechnical engineering are often higher than those
in other fields [27]. Hence, the occurrence of negative values for pos-
itive random variables when generating the calibrating points using
the classical RSM is quite common in geotechnical engineering,
which has previously been noticed by Mollon et al. [21]. Such phys-
ically impermissible values result in the iteration termination of
numerical programs before the reliability index converges.
Therefore, the classical RSM may not be suitable for geotechnical
reliability analysis. Although the step size during the iteration pro-
cess can be adjusted manually to avoid negative values for positive
random variables [21], such a procedure has to be realised in a
trial-and-error manner and may not always be effective.

4. Modified response surface method

Let y denote the reduced variables of x, and let x = T(y) denote
the transformation relationship between reduced variables and
original variables. Substituting this relationship into g(x), the per-
formance function can be expressed in terms of y as follows:

gðxÞ ¼ g½TðyÞ� ¼ GðyÞ ð5Þ

where G(y) is the performance function in the reduced space. A set
of transformation equations for different types of random variables
is documented in the study by Low and Tang [24]. For instance, if xi

is a lognormal random variable with a mean of lxi and a COV of dxi,
it can be related to its reduced variable yi as follows:

xi ¼ TðyiÞ ¼ expðki þ niyiÞ ð6Þ

where ki and ni are the mean and standard deviation of lnxi, respec-
tively, which can be calculated with the following equations:

ki ¼ ln lxi � 0:5n2
i ð7Þ

ni ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1þ d2

xi

� �q
ð8Þ

As shown in Eq. (6), xi is always non-negative as assumed in the log-
normal distribution regardless of the value of yi. This procedure is
also suitable for other types of non-negative random variables.
Thus, if the calibration points are determined in the reduced space
instead of the original space, the physically impermissible sampling
points can be effectively avoided. With this realisation, we suggest
that one can approximate the performance function in the reduced
space as follows:

J. Zhang et al. / Computers and Geotechnics 69 (2015) 496–505 497



Download English Version:

https://daneshyari.com/en/article/6710915

Download Persian Version:

https://daneshyari.com/article/6710915

Daneshyari.com

https://daneshyari.com/en/article/6710915
https://daneshyari.com/article/6710915
https://daneshyari.com

