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a b s t r a c t

The mechanical properties of soils and rocks can be highly variable, and there has recently been a great
deal of interest in modelling this variability using random field theory, in which the material properties
vary from point to point. When these point-wise material properties are mapped onto a finite element
mesh, discretization errors are inevitable. In this study, the discretization errors are studied and sugges-
tions for element sizes in relation with spatial correlation lengths are given.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Handling property variability is a research area of great impor-
tance and interest in civil, geotechnical and material engineering.
At the micro scale, material properties are random due to spatially
varied microstructures. Ideally, we would try to directly model this
micro scale randomness to predict the overall macro scale perfor-
mance, but this is obviously too computationally demanding to be
practical. A compromise is to use a meso scale, i.e., the size of an
element in a finite element method (FEM) simulation by homoge-
nizing the micro scale randomness in each element to predict
macro scale performance. When the meso scale is large enough
to include all of the micro randomness, the overall material prop-
erties at the meso scale are spatially constant. For example, steel
usually exhibits randomness on the micrometer scale, but typical
finite elements with a size on the order of a centimeter are large
enough to have constant properties. In geotechnical engineering,
however, the material properties on the meso scale can show sig-
nificant spatial variability. Random field theory is often used to
model spatial variability. The starting point for a discussion of ran-
dom field modelling is the ‘‘point’’ statistics that are assumed for
the model. These are the hypothetical statistical properties of the
soil or rock that would be measured if many tests could be per-
formed on infinitesimal samples at a site or laboratory. A conve-
nient measure of the spatial variability of a random field is the

correlation length h. Loosely speaking, h is the distance within
which points are significantly correlated (i.e., by more than
approximately 10%). Conversely, two points separated by a dis-
tance greater than h are largely uncorrelated. Many studies have
been undertaken in recent years to develop probabilistic methods
that address spatial variability in a systematic way (e.g., [9,19,11,
13,14,16,1,21,18,17,20]). Of particular importance has been the
development of the random finite element method (RFEM) for
modelling the spatial variability of geomaterials (e.g., [7]). While
mesh effects have been investigated for highly variable materials
by some investigators (e.g., [8,5,6,13,14,2,4,15]), the discretization
error due to the element size has received little formal attention;
the work of with Ching and Phoon [3] is an exception. A small cor-
relation length means that the properties of a soil change rapidly
from place to place; therefore, the element size should be small
enough to capture the spatial randomness of the material proper-
ties. The major aim of the present work, therefore, is to establish a
more formal link between the maximum element size and the spa-
tial correlation length. The paper begins with a review of the local
averaging method based on the geometric mean. The local averag-
ing method can provide an analytical estimate of the effective
overall property by taking the spatial correlation structure into
account. Although the geometric mean is dominated by low values,
it ignores the ‘‘seeking out’’ effect of a failure mechanism. This
effect will be examined using direct Monte Carlo simulations.
From the direct simulations, the discretization errors are studied
and suggestions for appropriate element sizes in relation with spa-
tial correlation lengths are given.
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2. Modelling the strength of materials using local averaging

For the purpose of demonstration, this study will focus on the
strengths of engineering materials. It is assumed that the strengths
of materials are modelled by point-wise random fields. The ques-
tion is how small the element size should be for a given spatial cor-
relation length. We restrict ourselves to isotropic Gaussian random
fields or random fields that can easily be transformed into
Gaussian random fields. We want to investigate the strength in a
certain domain (i.e., the macroscale strength) in which the strength
at any micro-scale point within the domain is modelled by a ran-
dom field. In this section, the overall strength of a certain domain
is estimated analytically using local averaging. The results will be
compared to those of RFEM simulations.

The overall strength of a material in a certain domain is usually
dominated by its low-strength regions. Because it is dominated by
low values, the geometric mean is recommended by Fenton and
Griffiths [7] for estimating the overall strength. The geometric
mean is defined as the nth root of the product of n (nonnegative)
random variables. Using this definition, the discrete set of random
variables X1;X2; . . . ;Xn has the geometric mean

XG ¼ ðX1;X2; . . . ;XnÞ1=n
: ð1Þ

XG weights low values more heavily than high values (low values
dominate). This can be seen by considering what happens to the
geometric mean (see Eq. (1)) if even a single Xi is zero: XG becomes
zero.

By expressing Eq. (1) as a power of e, we obtain an alternative
way of computing the geometric mean,

XG ¼ exp
1
n

Xn

i¼1

ln Xi

 !
: ð2Þ

If X is a 1D continuously varying spatial random field, the geo-
metric mean of X over a given domain becomes

XG ¼ exp
1
R

Z R

0
ln XðnÞdn

� �
; ð3Þ

where R is the length over which X is averaged and n is a spatial
coordinate.

If X is log-normally distributed, XG tends to be log-normally dis-
tributed, according to the central limit theorem. The mean and
variance of XG are found by first finding the mean and variance
of ln XG. The mean of ln XG is

E½ln XG� ¼ E½1R
R R

0 ln XðnÞdn�
¼ 1

R

R R
0 E½ln XðnÞ�dn

¼ E½ln X�
¼ lln X

ð4Þ

where lln X is the mean of ln X,

lln X ¼ ln lX �
1
2
r2

ln X ð5Þ

and

rln X ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1þ rX

lX

� �2
 !vuut ; ð6Þ

where lX and rX are the mean and standard deviation of a
log-normally distributed random field X .

We note that because the median of a log-normally distributed
random field X is expðlln XÞ, the median of XG is equal to the med-
ian of X. In other words, taking the geometric average of a
log-normally distributed random field X preserves both the type
of distribution and its median.

The variance of ln XG is

Var ½ln XG� ¼ E 1
R

R R
0 ½ln XðnÞ � lln X �dn 1

R

R R
0 ½ln XðgÞ � lln X �dg

h i
¼ 1

R2

R R
0

R R
0 E½ðln XðnÞ � lln XÞðln XðgÞ � llnXÞ�dndg

¼ 1
R2

R R
0

R R
0 ClnXðsÞðn� gÞdndg

¼ r2
lnX

R2

R R
0

R R
0 qlnXðsÞðn� gÞdndg

¼ r2
lnXclnXðRÞ

ð7Þ

where f and g are spatial coordinates, s is the distance between two
points, ClnXðsÞ is the covariance function of ln X, qlnXðsÞ is the corre-
lation function of ln X such that ClnXðsÞ ¼ r2

lnXqlnXðsÞ; rlnX is the
mean and standard deviation of ln X, and clnXðRÞ is the variance
function that determines how much the variance is reduced when
X is averaged over a length R using Eq. (1),

clnXðRÞ ¼
1
R2

Z R

0

Z R

0
qlnXðsÞðn� gÞdndg ð8Þ

There are a few commonly used correlation functions (see, e.g.,
[7]). The Markov correlation function used in this study is

qlnXðsÞ ¼ exp � jsj
hlnX

� �
; ð9Þ

where hlnX is the spatial correlation length of ln X.
The correlation function in logarithmic space can be converted

to the following correlation function in real space (e.g., [25]):

qXðsÞ ¼
expðr2

lnXqlnXðsÞÞ � 1
expðr2

lnXÞ � 1
ð10Þ

For most random fields, the two correlation functions are quite
similar and

hlnX ¼ hX ð11Þ

Because of Eq. (11), from now on, the spatial correlation lengths in
the logarithmic and real spaces are both denoted by h.

In 2D, for a rectangular domain with side lengths Rx and Ry, the
variance function is defined by

clnXðRx;RyÞ ¼
4

R2
x R2

y

Z Ry

0

Z Rx

0
ðRx � xÞðRy � yÞqlnXðsÞ dxdy: ð12Þ

Using the correlation function given in Eq. (9), the variance
function can be obtained analytically as follows:

clnXðRx;RyÞ ¼
4h4

R2
x R2

y

Rx

h
þ exp �Rx

h

� �
� 1

� �
Ry

h
þ exp �Ry

h

� �
� 1

� �
;

ð13Þ

where Rx and Ry are the lengths of the sides of a rectangular domain.
Once the mean and variance of ln XG have been computed, the

mean and variance of XG can be computed using

lXG
¼ exp llnX þ 1

2 r
2
lnXclnX

� �
¼ lXffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ rX
lX

	 
2
� �1�clnX

s ð14Þ

and

rXG ¼ lXG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expðr2

lnXclnX � 1Þ
q

¼ lXG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp ln 1þ rX

lX

	 
2
� �

clnX � 1
� �s ð15Þ
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