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a b s t r a c t

Understanding non-Newtonian flow in microchannels is of both fundamental and practical significance
for various microfluidic devices. A numerical study of non-Newtonian flow in microchannels combined
with electroviscous effect has been conducted. The electric potential in the electroviscous force term
is calculated by solving a lattice Boltzmann equation. And another lattice Boltzmann equation without
derivations of the velocity when calculating the shear is employed to obtain flow field. The simulation of
commonly used power-law non-Newtonian flow shows that the electroviscous effect on the flow depends
significantly on the fluid rheological behavior. For the shear thinning fluid of the power-law exponent
n < 1, the fluid viscosity near the wall is smaller and the electroviscous effect plays a more important role.
And its effect on the flow increases as the ratio of the Debye length to the channel height increases and
the exponent n decreases. While the shear thickening fluid of n > 1 is less affected by the electroviscous
force, it can be neglected in practical applications.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The application of micro-electro-mechanical-systems has been
recently increasing in various fields. Devices with dimensions of the
order of microns are being developed for a range of miniaturized
fluidic systems in advanced detecting processes and propulsion
systems [1]. Such microfluidic devices are not simply scale-down
version of conventional ones and this motivates research toward
a better understanding of microscale fluidic transport phenomena
such as electrokinetic effect or surface effects to optimize the device
design and operation.

It is known that most solid surfaces carry electrostatic charges
or electrostatic surface potential. The electrostatic charges on the
solid surface will attract the counterions in the liquid when the
liquid contains certain amount of ions. The rearrangement of the
charges on the solid surface and the balancing charges in the liq-
uid are called the electrical double layer (EDL) [2,3], composing of
the immobile compact layer and the mobile diffuse layer. When
liquid flows through a microchannel under a hydrostatic pressure,
the nonzero electrical charges in the mobile part of the EDL are
carried downstream, building a balance between the streaming
current flowing in the streamwise direction and the conductance
current flowing back in the opposite direction. When the ions are
moved in the diffuse layer, they pull the liquid along with them
in the opposite direction to the pressure-driven flow, leading to
a reduced flow rate compared with the conventional theory pre-
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diction. Such electrokinetic effect of the presence of the EDL on
the flow behavior is similar to that of a liquid having a higher
apparent viscosity, referred to the electroviscous effect [2]. Some
researches have shown that the electroviscous effect is significant
in microflows and it causes an obvious flow resistance increase
compared to conventional theory [3–5]. However, some literature
[6,7], including our previous experimental and numerical study
[8] has argued that the electroviscous effect is not so obvious in
microchannel flow under moderate electrical conductivity of the
liquid and conductivity of the walls. To the authors’ best knowl-
edge, most of the existing studies are limited to Newtonian fluid.
However, the flow behavior of non-Newtonian fluid is of high
interest in practical applications such as sample collection, dis-
pensing, reaction, detection, mixing, and separation of various
biological and chemical species on a micro-chip integrated with
fluidic pumps and valves. The fluid rheological behavior combined
with the microscale effects usually plays a more important and
complex role. Fundamental understanding of the non-Newtonian
role in liquid transport through microchannels is significant to cor-
rectly predict and control the characteristics and performance of
such microfluidic devices. In this article, we numerically study the
flow characteristics of non-Newtonian fluids combined with the
electroviscous effect in microchannels by using the lattice Boltz-
mann method (LBM).

The LBM originates from mesoscopic kinetic equations and
intrinsically possesses some essential microscopic physics ingre-
dients, which makes the LBM of great potential to capture the
non-continuum effects including non-equilibrium and electroki-
netic phenomena in microfluidic devices. For the non-Newtonian
fluid, its viscosity is related to the local rate of strain through the
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constitutive equation for the stress tensor. The kinetic essence of
the LBM makes it capable of calculating the local components of the
stress tensor without a need to estimate velocity gradients, while
the Navier–Stokes solvers need to get the derivatives of obtained
velocity profiles. This feature makes the LBM retain second-order
accuracy and high efficiency for shear-dependent non-Newtonian
flow simulations [9–15].

In the next section, the lattice Boltzmann equations for the
velocity field of non-Newtonian fluid and for the electric potential
distribution are introduced with their boundary conditions. In Sec-
tion 3, the LBM equations are used to analyze the velocity profiles
for non-Newtonian flow combined with the electroviscous effect
under external pressure gradient. The distribution of the electro-
viscous force across the channel is also presented and discussed.
This article is concluded in Section 4.

2. Numerical methods

2.1. The lattice Boltzmann equation for non-Newtonian fluid flow
field

The LBM tracks the evolution of the local distribution functions,
f of the computational particles to describe the conserved fields.
The discrete evolution equation with the Bhatnagar–Gross–Krook
(BGK) collision approximation is [16]:

fi(r + ciıt, t + ıt)

= fi(r, t) − ıt
�v

[fi(r, t) − f eq
i

(r, t)] + ıt F · (ci − u)
RT

f eq
i

(r, t), (1)

where �v is the relaxation time, ci is the particle discrete veloc-
ity and F is an external force term. For a D2Q9 square lattice,
c0 = 0, ci = (cos[(i − 1)�/2], sin[(i − 1)�/2]) for i = 1, 2, 3, 4 and ci =
(cos[(i− 5)�/2 + �/4], sin[(i− 5)�/2 + �/4])

√
2c for i = 5, 6, 7, 8

where c = ıx/ıt is the particle streaming speed (ıx, ıt are the lat-
tice spacing and time step, respectively). The equilibrium density
distribution function, f eq

i
(i = 0, 1, ..., 8) for a D2Q9 lattice [17]:

f eq
i

= �ωi
[

1 + 3(ci · u)
c2

+ 9(ci · u)2

2c4
− 3(u · u)

2c2

]
, (2)

where ω0 = 4/9, ωi = 1/9 for i = 1, 2, 3, 4 and ωi = 1/36 for i = 5, 6, 7, 8.
The relaxation time �v is linked to the kinematic viscosity� through:

�v = 3�
ı2
t

ı2
x

+ 0.5ıt. (3)

The mass density and momentum density can be obtained by
summing over the distribution functions, fi(r,t):

� =
∑
i

fi and �u =
∑
i

fici. (4)

We know that the stress tensor for an incompressible fluid with
pressure p is given by:

�˛ˇ = −pı˛ˇ + �
(
∂u˛
∂xˇ

+ ∂uˇ
∂x˛

)
= −pı˛ˇ + 2�S˛ˇ, (5)

where � is the dynamic viscosity, ı˛ˇ is the Kronecker delta, and
S˛ˇ = 1/2((∂u˛/∂uˇ) + (∂uˇ/∂u˛)) is the shear strain rate tensor. We
calculate S˛ˇ at each node in the LBM as [18]:

S˛ˇ = − 3
2�c2�v

∑
i=0

f (1)
i

ci˛ciˇ, (6)

where f (1)
i

is the non-equilibrium part of the distribution function.
In the commonly used power-law model for non-Newtonian fluid,

the viscosity is given by:

� = �0
̇
n−1 = �0(S˛ˇS˛ˇ)(n−1)/2, (7)

where the shear rate-related 
̇ is 
̇ =
√
S˛ˇS˛ˇ and the parameter

n is the power-law exponent which determines the response of
the fluid to changes in shear rate. The fluid is classified as shear
thinning for n < 1 and shear thickening for n > 1. The fluid recovers
the Newtonian behavior with shear-independent viscosity �0 at
n = 1.

Coupling Eqs. (3), (6) and (7), together with�=��, we can derive
a shear-dependent relaxation time �v at each node in the lattice
Boltzmann evolution Eq. (1).

Note that the quantity f (1)
i

ci˛ciˇ in Eq. (6) is usually computed
with second-order accuracy during the collision process in the LBM
evolution. Therefore, the stress tensor components and the corre-
sponding shear-dependent viscosity of non-Newtonian fluid can
be obtained independent of the velocity fields, in contrast to most
traditional CFD methods which estimate the stress tensor com-
ponents from the obtained velocity field. This benefit without a
need to get the derivatives of velocity profiles in computing the
stress tensor and non-Newtonian viscosity is clear when dealing
with flow in complex geometry of irregular cross-sections or flows
characterized by large velocity gradients [18].

We can demonstrate that Eq. (1) recovers the Navier–Stokes
equation by using the Chapman–Enskog approximation:

�

(
∂u
∂t

+ (u · ∇)u

)
= ��∇2u + �F, (8)

The force term under external pressure gradient �p can be
expressed as:

�F = −∇p− �eE, (9)

where �e is the net charge density per unit volume at any point in
the liquid, E is the stream electric field caused by the ion movement
in the solution, and �eE presents the electro-viscosity term. The
stream electric field can be obtained through a balance between
streaming current and electrical conductance current at steady
state:

E = −�eu
�
, (10)

here � is the electrical conductivity of the liquid layer. A solution
conductivity law originally devised by Friedrich Kohlrausch (see
Ref. [19] for details), which states that the conductivity of a dilute
solution is the sum of independent values: the molar conductivity
of the cations and the molar conductivity of the anion. The law
is based on the independent migration of ions and then � can be
written as:

� = n+�+ + n−�−, (11)

where� is the molar conductivity.

2.2. The lattice Boltzmann equation for electric potential

Note that the net charge density per unit volume, �e, must be
obtained before solving the velocity field from Eq. (9). The rela-
tionship between the electric potential in the liquid, , and the net
charge density per unit volume, �e, at any point in the liquid is
described by the Poisson equation:

∇2 = − �e
εε0

, (12)

where ε0 is the permittivity of free space and ε is the relative
dielectric constant of the solution. Assuming that the equilibrium
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