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a b s t r a c t

One of the important pre-processing stages in the analysis of jointed rock masses is the identification of
rock blocks from discontinuities in the field. In 3D, the identification of polyhedral blocks usually involve
tedious housekeeping algorithms, because one needs to establish their vertices, edges and faces, together
with a hierarchical data structure: edges by pairs of vertices, faces by bounding edges, polyhedron by
bounding faces.

In this paper, we present a novel rock slicing method, based on the subdivision approach and linear
programming optimisation, which requires only a single level of data structure rather than the current
2 or 3 levels presented in the literature. This method exploits the novel mathematical framework for con-
tact detection introduced in Boon et al. (2012). In the proposed method, it is not necessary to calculate the
intersections between a discontinuity and the block faces, because information on the block vertices and
edges is not needed. The use of a simpler data structure presents obvious advantages in terms of code
development, robustness and ease of maintenance. Non-persistent joints are also introduced in a novel
way within the framework of linear programming. Advantages and disadvantages of the proposed
modelling of non-persistent joints are discussed in this paper. Concave blocks are generated using
established methods in the sequential subdivision approach, i.e. through fictitious joints.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Jointed rock masses are made up from numerous polyhedral
rock blocks, whose faces are cut out by discontinuities in the rock
field. The spatial distribution, size and orientation of these
discontinuities are rarely regular and usually follow probabilistic
distributions. As a result, the size and shape of each block in the
jointed rock mass are different. For the purpose of distinct element
modelling (DEM) or discontinuous deformation analysis (DDA),
one has to invest significant effort to identify polyhedral blocks
from the discontinuities (see Fig. 1), whose orientations are typi-
cally defined using their dip directions and dip angles (see Fig. 2).

Broadly, there exist two approaches in block generation
algorithms. The first approach is based on subdivision, in which
discontinuities are introduced sequentially [47,19,48,53]. Each dis-
continuity is introduced one-at-a-time (see Fig. 3a). If a discontinu-
ity intersects a block, the parent block is subdivided into a pair of
so-called child blocks. This process is repeated until all the discon-
tinuities are introduced. The number of blocks increases as more

‘‘slices’’ are introduced, and a data structure of every block is main-
tained throughout the slicing process. The blocks generated
through sequential subdivision are convex because a discontinuity
has to terminate at the face of a neighbouring block. Concave
blocks can, nonetheless, be generated through the use of clustering,
which can be automated [48] or guided by specifying fictitious
construction joints [47]; Fig. 4). Blocks subdivided by a construc-
tion joint are clustered together by imposing a kinematic con-
straint which prevents any relative movement between the two
sides of the joint. Likewise, non-persistent joints, i.e. joints of finite
sizes [14,51], can be modelled through clustering, specifying ficti-
tious construction joints, or subdomains [19]; see Fig. 5). This is
discussed again in further detail in a later paragraph. On the other
hand, in the second approach (‘face-tracing’ based on simplicial
homology theory), discontinuities are introduced all-at-once (see
Fig. 3b). All the vertices and edges in the domain are first calculated
from the intersections between the discontinuities. From these
vertices and edges, there are ways by which the faces and polyhe-
dra in the rock mass can be identified [33,23,28,34]. The necessary
algorithms are, however, rather complex. The advantage of this
approach is that convex and concave blocks are identified in the
same manner. Non-persistent joints and dangling joints (see
Fig. 6), i.e. joints which terminate inside intact rock without
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contributing to block formation [28], are also treated in the same
manner as persistent joints, i.e. joints of infinite size. Depending
on the type of mechanical analysis which is to be performed on
the generated rock mass, these dangling joints may have to be
removed; for instance, they have to be removed if either the dis-
tinct element method [10,24,25] or discontinuous deformation
analysis [42] is used later on for analysis; but they do not need
to be removed if fracturing has to be modelled, for instance
employing the discrete-finite element method [38]. A summary
of the two approaches is shown in Table 1.

This paper is about the sequential subdivision approach. In the
case of a complex 3-D jointed rock mass, the generation of polyhe-
dral blocks requires tedious and algorithmically complex updates
of the data structure which is used to encapsulate the significant
geometrical features of the mass. The number of faces, edges and
vertices of the polyhedra in the jointed rock mass is unknown to
the modeller, and they become known only at the end of the rock
slicing procedure. Therefore, during block generation, the manage-
ment of this triple-level data structure (faces, edges and vertices)
requires careful implementation in a numerical code. Since com-
puting resources, e.g. computing time and memory, is rarely a
major concern in rock slicing algorithms by comparison to the
simulation runtime of the physical problem considered (e.g. under-
ground excavations, stability analysis of rock slopes, etc.), the
choice of code implementation is dictated by factors such as the
time needed for code development, ease of code maintenance,
and robustness. Algorithms based on the subdivision approach
are mainly concerned about the updating of the data structure
every time a block is subdivided. A triple-level and a double-level
hierarchical data structure have been proposed by Warburton [47]
and Heliot [19] respectively for their rock slicing algorithms (see
Fig. 7). In Warburton [47], the flow of the algorithm proceeds as
follows: (i) intersections (new vertices) are identified and old
edges are subdivided, (ii) new edges are identified from the old
faces which cross the joint plane and also from their edges which
cross the joint plane (not every pair of new vertices can form a
new edge), (iii) faces and other data structure for the child blocks
are updated (see Fig. 7a). Most of the algorithms proposed recently
(e.g. [48] make use of the data structure proposed by Heliot [19]. In
Heliot [19], every face of a polyhedron is indexed, and a vertex is
assumed to result from the intersection of three planes (see

Fig. 7b). Each vertex therefore consists of three indices. An
intersection check is performed for every pair of vertices which
have two indices in common (e.g. between vertex-146 and
vertex-346). New vertices are created from the intersection, and
their indices are identified. Old vertices are allocated to the new
child blocks depending on whether they are on the positive or
negative halfspace. The lists of faces and vertices are rebuilt for
each child blocks.

The level of housekeeping (or bookkeeping) algorithms, which
is required in a block generation computer code, depends on the
choice of data structures. Heliot [19] has, for instance, made book-
keeping more manageable by reducing the original three-level data
structure [47] to a two-level data structure consisting of only ver-
tices and faces (see Fig. 7). In the rock slicing method presented in
this paper, only a single data structure consisting of the block faces
is used. It will be shown that this novel procedure makes block
generation algorithmically simpler and numerically more robust.
Whilst it is necessary to establish whether there is intersection
between a block and a discontinuity, the exact intersections
between the discontinuity and the block faces need not be calcu-
lated in our method. In other words, information on block vertices
and edges are not necessary, so there is no longer the need to
maintain a complex hierarchical data structure, and problems aris-
ing from rounding errors in the case of high vertex density can be
avoided (c.f. [15]). According to the proposed novel mathematical
treatment based on convex optimisation, the block faces of a poly-
hedron are defined by linear inequalities, the equation of a joint
plane is defined by a linear equality constraint, and the geometrical
boundary of a non-persistent joint by linear inequalities. Given a
non-persistent joint and a polyhedron which are potentially inter-
secting, we establish whether there is actual intersection by check-
ing if the optimisation problem defined by the linear equality
constraint for the joint plane, the inequality constraints for the
geometrical boundary of the non-persistent joint, and the inequal-
ity constraints for the polyhedron is feasible (i.e. whether the con-
vex set is not empty). The problem is feasible if there is a point
lying inside the interior region defined by the linear inequalities
and at the same time satisfying the linear equality constraint [8],
and not feasible if otherwise. To ascertain the existence of such a
point, i.e. whether the problem is feasible, a linear program is
run (illustrated in Section 2.3) to find the point with the largest
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Fig. 1. Illustration of a simple set of rock slices, resulting in polyhedral rock blocks.
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Fig. 2. Definition of strike, dip and dip direction according to Hoek et al. [20].
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