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a b s t r a c t

An analytical solution is derived for the axisymmetric thermo-elastic problem of multilayered material
with anisotropic thermal diffusivity due to a buried heat source. By applying the Laplace–Hankel trans-
form to the state variables involved in the basic governing equations, the analytical layer-element which
describes the relationship between the transformed generalized stresses and displacements is obtained.
Considering the continuity conditions between adjacent layers and the boundary conditions, the global
stiffness matrix for a multilayered system is assembled and solved in the transformed domain. The actual
solutions of the problem in the physical domain are acquired by inverting the Laplace–Hankel transform.
Finally, some numerical examples are given to demonstrate the accuracy of the proposed method and to
illustrate the influences of the heat source’s types and the anisotropy of thermal diffusivity on the
thermo-elastic response.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The thermo-elastic problem of the time-dependent behavior of
material containing a heat source is of significant in environmental
engineering and civil engineering. The heat source such as a canis-
ter of radioactive waste is usually deposited at a large depth, such
as 100–700 m below ground, to avoid affecting humans. The heat
source continuing to generate heat for a long period of time may
lead to temperature rising and volume expanding of the surround-
ing media. Therefore, extensive attention has been received on the
problem in the field of geology, environmental engineering, soil
science and civil engineering.

The constitutive equations for thermo-elastic material, which
express the relations between the stress, the strain and the tem-
perature change, were first introduced by Biot [1]. With Biot’s the-
ory, many solutions for thermal response caused by the change of
temperature have been developed by numerous investigators.
Keramidas and Ting [2] developed two finite element models to
deal with the problem of induced thermal stresses in a medium
subjected to temperature changes on its boundary surface. Ghosna
and Sabbaghianb [3] investigated axisymmetric quasi-static

coupled problems of thermoelasticity for cylindrical regions with
the aid of Laplace transform. Small and Booker [4,5] presented
the solutions for the behavior of layered soil or rock deposits which
contain a heat source with the help of the finite layer method.
Carter and Booker [6] proposed a finite element method to solve
the governing equations for the fully coupled theory of thermo-
elasticity, which revealed that semi-coupled theory could provide
sufficient accuracy in most geotechnical problems. Sharma and
Chand [7] investigated the axisymmetric and plane strain prob-
lems in generalized theories of thermo-elasticity by employing
the eigenvalue approach after application of the Laplace and
Hankel transforms. The boundary element method was developed
for problems of quasi-static axisymmetric thermo-elasticity by
Dargush and Banerjee [8]. Brock et al. [9] obtained fundamental
thermoelastic two-dimensional solutions for thermal and/or
mechanical loadings moving unsteadily over the surface of a
half-space. Considering the theory of thermoelasticity, Sherief
and Megahed [10] solved the two-dimensional problem for a half
space whose surface is traction free and subjected to the effects
of heat sources. Zhong and his coworkers [11,12] applied the trans-
fer matrix method to solve the thermal stress problem with vari-
able temperature of a multilayered elastic half-space system. As
we know from practice, the typical deposit process of natural
geomaterials may lead to clear differences in thermal diffusivity
between different directions, especially for the horizontal and
vertical thermal diffusivity. Therefore, some researchers focused
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their attention on the study of the thermo-elastic response of the
material with anisotropic thermal diffusivity [13,14]. Yue [13]
provided an analytical solution for the fundamental transient
thermo-elastic problem with body forces and a heat source in ver-
tically inhomogeneous media. By utilizing a similar approach to
Sharma and Chand [7], Sharma and Kumar [14] investigated the
plane strain problems in generalized theory of thermo-elasticity
in a homogeneous transversely isotropic medium.

The objective of this paper is to introduce the analytical layer-
element method [15–18] to study the behavior of multilayered
material with anisotropic thermal diffusivity containing a heat
source at an arbitrary depth. Three types of heat sources, a point
heat source, a circular area source and a ring heat source, are con-
sidered to satisfy different practices. Based on the basic governing
equations of the discussed problem in elasticity and heat transfer,
the analytical layer element, which establishes the relationship
between the generalized displacements and stresses for a single
material layer, is acquired in the transformed domain with the help
of the Laplace–Hankel transform. Then, the global stiffness matrix
equation of the multilayered material is further obtained by
assembling the interrelated layer elements, according to the conti-
nuity conditions between adjacent layers. The solutions in the
Laplace–Hankel transformed domain are obtained by solving the
global stiffness matrix equation satisfying the boundary condi-
tions, and the actual solutions in the physical domain can be
acquired by the inversion of the Laplace–Hankel transform. Finally,
based on the analytical solutions, numerical examples are pre-
sented to illustrate the correctness of the method, and to investi-
gate the effects of different material parameters on temperature
increment and variation of displacement.

2. Governing equations

In the absence of body forces, the stresses in the cylindrical axi-
symmetric coordinate system should satisfy the equilibrium
equations:
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where rr, rh and rz, are the normal stress components in r, h and z
directions, respectively; rrz is the shear stress component in the
plane r–z.

The stress–strain relationship of thermo-elastic medium can be
written as [1]:
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where r ¼ ðrr;rh;rz;rrzÞT is the vector of stress components;

e ¼ @ur
@r ;

ur
r ;

@uz
@z ;

@ur
2@zþ

@uz
2@r

� �T
is the vector of strain components, here ur

and uz represent the displacement components in r and z directions,
respectively; # ¼ ð1;1;1; 0ÞT; e ¼ @ur
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tion; k ¼ 2Gl
1�2l and G ¼ E

2ð1þlÞ are the Lamé modulus and elastic shear

modulus of the material, in which E and l denote Young’s modulus
and Poisson’s ratio of the material, respectively; a represents the
coefficient of linear thermal expansion; and T denotes the temper-
ature increment.

Combining Eqs. (1) and (2), we have:
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where r2 ¼ @2

@r2 þ 1
r
@
@r þ @2

@z2 is the Laplacian operator for the axisym-
metric thermo-elastic problem.

The flow of heat within the media is assumed to be governed by
Fourier’s law of heat conduction:

q ¼ �kT$T ð4aÞ

where q ¼ ðqr; qzÞ
T is the vector of heat flow, here qr, qz are the heat

flow in the r and z directions, respectively; $ ¼ ð@=@r; @=@zÞT is the
gradient operator; kT ¼ ðkTr ; kTzÞT denotes the vector of the coeffi-
cient of heat conductivity, and kTr , kTz are the coefficients of heat
conductivity in the r and z directions, respectively.

The total heat flow Q in the z direction within the time from 0 to
t can be written as follows:

Q ¼
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By consideration of the semi-coupling of the elastic and thermal
processes, the heat diffusion equation with anisotropic thermal
diffusivity can be expressed as:
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where ar ¼ kTr=cq and az ¼ kTz=cq are the horizontal and vertical
coefficients of thermal diffusivity, respectively, here q and c repre-
sent the density and the specific heat of the material, respectively.

3. Derivation of the analytical layer-element

The mth-order Laplace–Hankel transform with respect to the
variables t and r are defined as [19]:
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where s and n are the Laplace and Hankel transform parameters,
respectively; i ¼

ffiffiffiffiffiffiffi
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p

; JmðnrÞ denotes the mth-order Bessel function
of the first kind.
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Combining Eqs. (7a) and (7b):

r2ðe� agTÞ ¼ 0 ð8Þ

where g ¼ 1þl
1�l.

Applying the zeroth-order Laplace–Hankel transform to Eqs. (5)
and (8), we have:
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Solving Eqs. (9a) and (9b) yields:

T ¼ e�zkA1 þ ezkA2 ð10aÞ

e ¼ age�zkA1 þ agezkA2 þ e�znA3 þ eznA4 ð10bÞ
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