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a b s t r a c t

In reliability analysis, the crude Monte Carlo method is known to be computationally demanding. To
improve computational efficiency, this paper presents an importance sampling based algorithm that
can be applied to conduct efficient reliability evaluation for axially loaded piles. The spatial variability
of soil properties along the pile length is considered by random field modeling, in which a mean, a var-
iance, and a correlation length are used to statistically characterize a random field. The local averaging
subdivision technique is employed to generate random fields. In each realization, the random fields
are used as inputs to the well-established load transfer method to evaluate the load–displacement behav-
ior of an axially loaded pile. Failure is defined as the event where the vertical movement at the pile top
exceeds the allowable displacement. By sampling more heavily from the region of interest and then scal-
ing the indicator function back by a ratio of probability densities, a faster rate of convergence can be
achieved in the proposed importance sampling algorithm while maintaining the same accuracy as in
the crude Monte Carlo method. Two examples are given to demonstrate the accuracy and the efficiency
of the proposed method. It is shown that the estimate based on the proposed importance sampling
method is unbiased. Furthermore, the size of samples can be greatly reduced in the developed method.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Monte Carlo simulation (MCS) is widely used for reliability
analysis because of its mathematical simplicity and robustness.
An important application of MCS is to evaluate the probability of
failure

Pf ¼ PðG 6 0Þ ¼
Z

G60
f ðxÞdx ¼

Z
I½G 6 0� f ðxÞdx ð1Þ

where P(�) denotes a probability measure, f(x) denotes the joint
probability density function (PDF) of random vector x, I[�] denotes
an indicator function, G denotes a limit state function (LSF), and
failure is denoted as G 6 0. A general definition of the limit state
function is written as

GðxÞ ¼ C � DðxÞ ð2Þ

where C and D denote the ‘‘capacity’’ and the ‘‘demand’’ in a broad
sense. With the probability of failure, the reliability index b can be
evaluated accordingly

b ¼ U�1ð1� Pf Þ ¼ �U�1ðPf Þ ð3Þ

where U�1(�) denotes the inverse of the cumulative distribution
function for the standard normal variable.

A common problem with the evaluation of the failure probabil-
ity is that the number of dimensions in reliability problems may be
large, making it difficult to evaluate the numerical integration (i.e.,
Eq. (1)) directly. In that case, the integration can be evaluated as
the expectation of the indicator function using Monte Carlo inte-
gration [15]. Simply speaking, the probability of failure Pf is
approximated as the ratio of the number of failure events to the
total number of samples

Pf ;MCS ¼
1
n

Xn

i¼1

Ii½G 6 0� ð4Þ

where n is the sample size, the subscript ‘‘MCS’’ indicates that the
estimate is evaluated using the crude MCS method. The indicator
function is equal to 1.0 if G 6 0, and it is zero, otherwise. Note that
in the crude MCS method, the random variables x are drawn from
the joint PDF f.

To guarantee the convergence of Eq. (4), the sample size n has to
be sufficiently large. According to Ang and Tang [2], the degree of
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precision for the estimate of Eq. (4) can be measured by its coeffi-
cient of variation (COV) dp

dp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Pf ;MCS

n � Pf ;MCS

s
ð5Þ

Eq. (5) indicates that the coefficient of variation is affected by the
sample size n and Pf. Based on Eq. (5), a back-calculation can be
used to estimate the sample size n as follows

n ¼ 1� Pf ;MCS

d2
p � Pf ;MCS

ð6Þ

Based on Eq. (6), it is concluded that the sample size n is related
to Pf and its COV dp. The smaller dp and Pf are, the larger n is. The
probability of failure Pf is usually a small number. Thus, the sample
size n is usually large such that the convergence of Eq. (4) is guar-
anteed. According to Robert and Casella [15], a rule of thumb for
selecting a sample size is that n is approximately ten times the
reciprocal of the probability level, if the COV for Pf is taken as
30%. For example, the sample size is at least 10,000 if Pf = 1/1000.
A larger sample size is warranted if a smaller dp is desired. Based
on the above discussion, it is well understood that the crude Monte
Carlo statistical methods are usually computationally expensive as
a result of repetitive evaluation of the indicator function. Particu-
larly, it becomes more demanding if the evaluation of the indicator
functions is complex.

In the reliability analysis for axially loaded piles, the authors
previously developed a performance based design approach using
the crude MCS method [9]. To improve the computational effi-
ciency of the Monte Carlo method, an importance sampling (IS)
based algorithm for fast reliability evaluation on axially loaded
piles was developed [10]. In the proposed algorithm, the instru-
mental function for importance sampling is constructed by shift-
ing the original PDF such that the mean is at the point having the
maximum probability density of the failure surface. By sampling
more heavily from the region of interest and then scaling the
indicator function back by a ratio of probability densities, a faster
rate of convergence can be achieved while maintaining the
accuracy of the estimate. Although the numerical theories of the
algorithm has been published, this paper has the following
enhancements:

(1) A discussion of the load transfer model [5] for axially loaded
piles was added. The load transfer model is employed to
evaluate the load–displacement relationship, which is used
to determined whether failure occurs. If the displacement
at the pile top exceeds the allowable limit, failure is said to
occur. Because the proposed algorithm is implemented by
a computer code to calculate the failure probability, it is
essential to include a brief description of the load transfer
model to explain the algorithm.

(2) Soil properties are statistically modeled as lognormal vari-
ables. The spatial variability of soil properties is considered
by random field modeling. The random fields for soil proper-
ties are simulated by using the local averaging subdivision
(LAS) method [11].

(3) Two examples – one for homogeneous clay sites and the
other for non-uniform clay sites – are presented to illus-
trate the accuracy and efficiency of the developed impor-
tance sampling method. The first example has been
expanded to discuss the influences of soil spatial variability
on the reliability evaluation. Moreover, the second example
was added to contrast the computational efficiencies of the
crude Monte Carlo method and the proposed numerical
algorithm.

2. Load transfer model

The analysis of axially loaded piles is a nonlinear soil-pile inter-
action problem that is solved by iterative numerical algorithms.
Numerous methods are available to analyze the response of an axi-
ally loaded pile, such as the finite element method and the load
transfer method. The load transfer method (e.g., [5] is widely used
because of its accuracy and simplicity. In the load transfer method,
the soil reaction to axial loads is modeled by nonlinear t–z curves
and q–w curves, where t represents side friction, z represents the
vertical movement of the pile, q represents the end bearing, and
w represents the vertical movement at the pile tip. A schematic
diagram of the load transfer model is shown in Fig. 1.

3. Random field modeling

Soil properties such as undrained shear strength and friction
angle are needed as input to construct the load transfer curves
(t–z curves and q–w curves). The soil properties are uncertain
due to intrinsic variability, measurement errors, and interpretation
errors. The variations of soil properties can directly affect the t–z
curves and q–w curves in the load transfer model. Consequently,
these variations can exert significant influence on the calculated
load–displacement curve. Therefore, the modeling of soil variabil-
ity is of great importance in reliability assessment.

Two statistical parameters, namely mean l and variance r2, are
required to characterize the variability of a soil property at the
point level. The mean measures the center of a dataset while the
variance measures the dispersion from the mean. One commonly
used probability distribution for soil properties is the lognormal
distribution (e.g., [12]. The use of lognormal distribution ensures
that soil properties are always non-negative. The PDF for lognor-
mal distribution is given as follows

f ðx lln x;rln x

�� Þ ¼ 1
xrln x

ffiffiffiffiffiffiffi
2p
p exp �1

2
ðln x� lln xÞ

2

r2
ln x

" #
ð7Þ

where llnx and rlnx are the distribution parameters. The distribution
parameters can be determined based on the mean lx and the stan-
dard deviation rx

rln x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1þ r2

x

l2
x

� �s
ð8Þ

lln x ¼ ln lx � 0:5r2
ln x ð9Þ

By taking the logarithm, a lognormally distributed random var-
iable can be transformed to a normal variable with mean llnx and
standard deviation rlnx. For mathematical simplicity, it is prefera-
ble to have normal variables. The advantage of such a transforma-
tion will become clear in the subsequent discussion. It should be
noted that other probability distributions such as normal distribu-
tion are possible choice for modeling soil properties.

In addition to the mean and the variance, a third parameter
called correlation length h is required to characterize the spatial
variability of a random variable [16]. The correlation length is
needed to define a correlation function, which describes how ran-
dom variables are correlated at different separation distances. For
example, the correlation function for Markov process is given
below

qðsÞ ¼ exp �2jsj
h

� �
ð10Þ

where q(s) is the correlation coefficient at the separation distance
of s. Eq. (10) says the correlation coefficient decays exponentially
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