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a b s t r a c t

A version of the Particle Finite Element Method applicable to geomechanics applications is presented. A
simple rigid-plastic material model is adopted and the governing equations are cast in terms of a varia-
tional principle which facilitates a straightforward solution via mathematical programming techniques.
In addition, frictional contact between rigid and deformable solids is accounted for using an approach
previously developed for discrete element simulations. The capabilities of the scheme is demonstrated
on a range of quasi-static and dynamic problems involving very large deformations.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Although most geotechnical structures operate in the small
deformation range, there are numerous problems within geotech-
nical engineering and related fields that call for methods where
changes to the problem geometry as a result of deformations are
taken into account. These include problems of landslides and deb-
ris flow, penetration of various devices such as cones and torpedo
anchors into the ground, and the interaction, during installation or
under operating conditions, of off-shore oil and gas infrastructure
with the seabed.

For some of these problems, the deformation pattern resembles
a fluid flow more than a solid undergoing large distortions. In the
framework on the standard finite element method, such problems
give rise to two fundamental challenges. The first one relates to
geometry in the sense that the magnitude of the deformations is
bound to lead not only to severe mesh distortion, but also to situ-
ations where the boundaries of the problem change from one time
step to the next. Of these two separate but related issues, the for-
mer has received by far the most attention. Indeed, for many prob-
lems the original boundaries are maintained even after relatively
large distortions. The perhaps most common approach to avoiding
or alleviating mesh distortion is the Arbitrary Eulerian Lagrangian
(ALE) method. This method utilizes the respective advantages of
pure Eulerian and pure Lagrangian formulations and has been used

quite successfully in geotechnical applications [1,2] and other solid
as well as fluid mechanics problems [3,4]. Another popular method
for geotechnical applications is the so-called Remeshing and Inter-
polation Technique with Small Strain (RITSS) technique proposed
by Hu and Randolph [5,6]. While both the ALE and the RITSS have
been used to solve problems involving relatively large deforma-
tions, they both have shortcomings in the case where the original
boundaries change in the course of the deformation process, for
example in the case where an initially contiguous solid separates
into two or more parts as a result of external actions.

The second challenge, which in many ways is the more serious
one (though it remains much less explored), is that of solving the
governing equations – comprising momentum balance, strain–dis-
placement relations and constitutive relations that usually are
highly nonlinear and may give rise to ill-posedness, localization
of deformations, etc. Indeed, it is well known that even small
deformation problems are hard to deal with for constitutive mod-
els that involve nonassociated flow rules [7].

In this paper a new scheme that addresses both of the funda-
mental challenges described above is presented. The scheme is
applicable to general large deformation problems with no real lim-
itations on the magnitude of the deformations. In other words,
both problems where the deformation patterns resemble fluid
flows and those that merely involve the deformation of solids
slightly beyond the small deformation limit can be handled. More
specifically, issues related to geometry are handled by means of the
Particle Finite Element Method (PFEM) [8–10] while the solution of
the governing equations is addressed by means of variational and
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mathematical programming methods that have their origin in
computational limit analysis [11–16] but since have been applied
to a wide range of other problems including elastoplasticity
[17,18,7] and discrete element type analysis [19–21]. Other issues
dealt with include dynamics and frictional contact.

The paper is organized as follows. In Section 2, the fundamen-
tals of the PFEM are briefly described with emphasis on the
alpha-shape method used for identifying solid and void domains
on the basis of a cloud of points. Section 3 details the governing
equations and their variational formulation. Next, in Section 4,
the discretization and solution of the governing equations are
described before the treatment of contact is detailed in Section 5.
Finally, in Section 6, a number of examples demonstrating the
capabilities of the scheme are presented before conclusions are
drawn in Section 7. While all aspects of the new scheme are appli-
cable to the general three-dimensional setting, the examples given
in this paper are limited to two dimensions assuming plane strain.

Standard matrix notation is used throughout with bold upper
and lower case letters denoting matrices and vectors respectively.

2. Particle Finite Element Method

The Particle Finite Element Method (PFEM) is, despite its name,
a mesh based continuum method. First developed for fluid dynam-
ics applications [8–10], the PFEM makes use of a Lagrangian
description to account for the motion of nodes of the finite element
mesh. A key feature of the method is that nodes are viewed as free
‘particles’ that can separate from the solid to which they originally
belong. On the basis of the resulting cloud of points, the solid and
void domains are identified and a standard finite element discret-
ization used to advance the simulation by a given time step. More
specifically, considering a time step tn ? tn+1, the steps of the PFEM
are as follows (see also Fig. 1):

0. A cloud of particles, Cn, is given at time tn.
1a. On the basis of Cn, identify the computational domain, Vn.
1b. Mesh the domain and discretize the governing equations on

Mn.
1c. Map the state variables (velocities, stresses, etc.) from the

old mesh, Mn�1, to the new mesh, Mn.
2a. Solve the discrete governing equations to obtain the

displacement of the nodes.

2b. Update the positions of the nodes to arrive at Cn+1 and
repeat.

2.1. Alpha-shape method

The critical issue in the steps above is the identification of the
computational domain on the basis of a cloud of points. For the
general case, there is no unique solution to this problem. The solu-
tion originally proposed by Idelsohn et al. [8] and subsequently
adopted as a standard feature of the PFEM was to use the alpha-
shape method previously developed by Edelsbrunner and Mucke
[22] for computer graphics applications.

The basic principle of the alpha-shape method is as follows.
Consider a cloud of points with a characteristic spacing h. Then
for some predefined value of a parameter a, all nodes on an empty
sphere with a radius greater than ah are considered boundary nodes.
In other words: for each point in the domain examine whether it is
possible to place a sphere with radius ah such that it contains only
that point. If possible, the point is a boundary point and if not, i.e. if
the sphere inevitably will contain more than the one point, it is an
internal point.

While a number of algorithms for recognizing boundaries by
means of the alpha-shape method are available, another, and in
many ways more straightforward possibility, has been proposed
by Cremonesi et al. [23]. The steps in this scheme are as follows.
Consider the cloud of particles as shown in Fig. 2(a). A Delaunay
triangulation is first performed to generate the convex domain
shown in Fig. 2(b). Next, the radius of the circumcircle of each tri-
angle is examined and triangles with a circumcircle radius greater
than ah are deleted. For the example at hand, this leads to the final
configuration shown in Fig. 2(c). As shown by Cremonesi et al., this
procedure is equivalent to the original alpha-shape approach ow-
ing to the property that the circumcircles of all triangles generated
by the Delaunay triangulation are empty.

2.1.1. Choice of a
It is clear that the alpha-shape method involves an element of

subjectivity. Indeed, the resulting domain is a direct function of
the value of the parameter a. This is illustrated in Fig. 3. A value
of a = 1.2 here produces a set of boundaries that in many cases
would be deemed reasonable. In fact, any value of a in the interval
0.9 6 a 6 1.3 produces this set of boundaries. Decreasing a below
0.9 leads first to internal voids (a = 0.5) and subsequently to a dis-
integration of the external boundaries as well (a = 0.4). On the other
hand, increasing a above 1.3 leads first to a coalescence of the two
distinct sets of points (a = 1.5) and then, for large values of a, to a
solid defined by the convex hull inscribing the cloud of points.

The conclusion of this example, that a value of a slightly greater
than 1 is appropriate, is consistent with experience from applica-
tion to actual physical problems. For example, for a wide range
of coupled fluid–solid interaction problems, Onate et al. [24] con-
clude that a value of a in the range of 1.3–1.5 is appropriate. For

Fig. 1. Steps in the Particle Finite Element Method.

Fig. 2. Boundary recognition via the scheme of Cremonesi et al. [23]: cloud of
points (a), Delaunay triangulation (b), after deletion of triangles with circumcircle
greater than ah (c).
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