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a b s t r a c t

In this study, upper bound finite element (FE) limit analysis is applied to stability problems of slopes
using a nonlinear criterion. After formulating the upper bound analysis as the dual form of a second-order
cone programming (SOCP) problem, the stress field and corresponding shear strength parameters can be
determined iteratively. Thus, the nonlinear failure criterion is represented by the shear strength param-
eters associated with stress so that the analysis of slope stability using a nonlinear failure criterion can be
transformed into the traditional upper bound method with a linear Mohr–Coulomb failure criterion.
Comparison with published solutions illustrates the accuracy and feasibility of the proposed method
for a simple homogeneous slope stability problem. The proposed approach is also applied to a seismic
stability problem for a rockfill dam to study the influence of different failure criterions on the upper
bound solutions. The results show that the seismic stability coefficients obtained using two different non-
linear failure criteria are similar but that the convergence differs significantly.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The analysis of slope stability is a very important issue in geo-
technical engineering projects. While the limit equilibrium method
has traditionally been used to assess the stability of slopes [1,2],
many researchers are attempting to elaborate and develop new
calculation methods. The limit analysis method [3], which involves
collapse load calculations using the lower and upper bound theo-
rems of plasticity, has provided engineers with a convenient alter-
native for slope stability problems. In recent years, numerical
lower and upper bound techniques in conjunction with the finite
element method (FEM) have been powerful tools for stability prob-
lems because of their rigorous lower and upper bound solutions.
Sloan [4,5], Sloan and Kleeman [6], Yu et al. [7], and Lyamin and
Sloan [8,9] have made significant progress in developing the finite
element (FE) limit analysis using linear programming (LP) or non-
linear programming (NLP). Recent research by Makrodimopoulos
and Martin [10–12] has concentrated on FE limit analysis using
second-order cone programming (SOCP) to solve stability or bear-
ing capacity problems.

Regardless of whether LP, NLP, or SOCP is used in limit analysis,
geomaterials are commonly assumed to obey a linear Mohr–Cou-
lomb failure criterion for slope stability problems. However, a sub-
stantial number of experiments have clearly shown that the failure
criterion of almost all geomaterials has a nonlinear nature [13–16].

At present, there are two types of methods that are suitable for
upper bound analysis using a nonlinear failure criterion. One of
them is the inverse method developed by Zhang and Chen [17],
which is based on a variational calculus technique. The other is
the tangent method proposed by Drescher and Christopoulos [18]
and further surveyed by Yang and Yin [19]. According to the tan-
gent method, the nonlinear failure envelope is represented by a
linear Mohr–Coulomb failure criterion with a straight tangential
line, which provides an upper bound solution due to the convexity
of the failure envelope. However, in this method, the friction angle
is assumed to be constant along the length of the sliding surface,
and the normal and shear stresses must also be constant for a non-
linear material [20]. These constant values do not conform to the
actual stress distribution of slopes.

According to plasticity limit theorems, it is known that a kine-
matically admissible velocity field will be constructed by the upper
bound method and a statically admissible stress field will be con-
structed by the lower bound method. When a nonlinear failure cri-
terion is used in the upper bound limit analysis of slope stability,
the main problem is how to represent the shear strength parame-
ters, which are commonly expressed in terms of stress. In fact, the
duality between the upper and lower bound theorems of plasticity
has an analogy in the duality theory of mathematical programming
[21]. On the other hand, the upper and lower bound theorems in
the limit theorem are dual to each other. This means we can get
the stress field that satisfies the conditions of equilibrium, the flow
rule and boundary in a weak sense from the dual of upper bound
analysis. For this reason, if the dual problem of the upper bound
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analysis can be formulated and optimised, the stress field will be
obtained, which can be used to represent the nonlinear failure cri-
terion exactly in slope stability analysis.

Based on the recent work by Makrodimopoulos and Martin [11],
this paper develops an upper bound FEM to analyse slope stability
using a nonlinear failure criterion. First, the dual problem of the
upper bound limit analysis is formulated and optimised by means
of a six-node triangle element without discontinuities. Then, the
stress distribution of slopes and the corresponding equivalent
shear strength parameters can be determined iteratively to obtain
the rigorous upper bound solutions of the slope stability factor and
the corresponding displacement fields. As distinct from the tangent
method, the nonlinear failure envelope is no longer represented by
a straight tangential line but by the equivalent shear strength
parameters associated with the stress distribution of slopes.

2. Upper bound theorem

Limit analysis consists of two theorems, namely, the upper and
lower bound theorems. The upper bound theorem states that the
external loads obtained are not lower than the true collapse loads
if a kinematically admissible displacement field can be found with
the conditions of boundary, the flow rule, and the energy–work
balance equation. Makrodimopoulos and Martin [11] demon-
strated that the six-node triangular element without a discontinu-
ous displacement field can be used to obtain strict upper bounds.
Consider a rigid, perfectly plastic construction V with boundary
S; according to the upper bound theorem, when the structure col-
lapses, there exists a kinematically admissible displacement field
such that energy dissipation is no more than the work of external
force:Z

V
r : eðuÞdV 6 qTu 8r 2 F ¼ r f ðrÞ 6 0jf g ð1Þ

where q are equivalent nodal loads, u should satisfy the boundary
conditions of S, and u = u0. Because displacement discontinuities
between elements do not exist, the power to be dissipated by plas-
tic deformation is only permitted to occur within each triangular
element. The plastic dissipation function is defined as

dpðeÞ ¼ sup
r2F

X
r : e ð2Þ

and the set of plastically admissible strains is

E ¼ e : dpðeÞ < þ1
� �

ð3Þ

The plastically admissible strains are those that satisfy the associ-
ated flow rule. We divide equivalent nodal loads into two parts: col-
lapse loads q1, which are subjected to a multiplier factor b, and
constant loads q0, which are not subjected to b. Using the definition
in Eq. (2), the energy–work balance condition in Eq. (1) can be writ-
ten as

DpðeÞ 6 bqT
1uþ qT

0u and eðuÞ 2 E ð4Þ

where

DpðeÞ ¼
Z

V
dpðeÞdV ð5Þ

Thus, an upper bound on b can be calculated by solving the follow-
ing optimisation problem:

min DpðeÞ � qT
0u

s:t: eðuÞ 2 E in V

u ¼ u0 on S

qT
1u ¼ 1

ð6Þ

3. Elements used for upper bound analysis

The six-node triangle finite element with straight sides that is
used in the upper bound analysis is shown in Fig. 1. Noted that a
side i–j–m of the six-node element in Fig. 1 will only be straight if

xm ¼ ðxi þ xjÞ=2 ð7Þ

Because the nodal displacement field can be expressed as a qua-
dratic form within a triangular element, any strain component
may vary linearly. Moreover, if the element sides are straight, the
strain tensor at any point within the triangle can be expressed as
a combination of those at three vertices, i.e.,

eðxÞ ¼
X3

i¼1

LiðxÞei;0 6 LiðxÞ 6 1;
X3

i¼1

LiðxÞ ¼ 1 ð8Þ

where the coefficients Li = Ai/(A1 + A2 + A3) are area coordinates. Be-
cause any strain tensor can be expressed by ei at the vertices, if the
flow rule is enforced at the three vertices of the element, it holds at
all points within the elements. Thus, the flow rule constraint only
needs to be enforced at a finite number for it to hold throughout
the structure.

4. Mohr–Coulomb criterion in plane strain conditions

As mentioned in Ref. [11], the main restriction of the proposed
method is that the yield function must be expressed as a conic qua-
dratic form. The Mohr–Coulomb criterion in plane strain condi-
tions is a typical example of a yield restriction with a conic
quadratic form. It can be written in the following form:

ksredk þ arm � k 6 0 ð9Þ

where

ksredk ¼ ½s11 s12�T ð10Þ

rm ¼
1
D

XD

i¼1

rii; sij ¼ rij � rmdij ð11Þ

where D is the dimension of the tensors and d is Kronecker’s d. For
plane strain conditions of the Mohr–Coulomb criterion, D = 2,
a = sin u, and k = c cos u, where c is the cohesion and u is the inter-
nal friction angle. Using the definition in Eq. (2) and the upper
bound theorem, the dissipation function for plastically admissible
strains can be derived to the following form for any a P 0 [11]:

dp ¼ kk with h ¼ ak and k P keredk ð12Þ

where k is an auxiliary variable and h is the volume expansion as

h ¼
XD

i¼1

eii ¼ divu ð13Þ

ered ¼ ½2e11 2e12 �T; eij ¼ eij �
1
D

hdij ð14Þ
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Fig. 1. Six-node linear strain element for upper bound analysis.
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