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a b s t r a c t

A key issue in assessment of rainfall-induced slope failure is a reliable evaluation of pore water pressure
distribution and its variations during rainstorm, which in turn requires accurate estimation of soil
hydraulic parameters. In this study, the uncertainties of soil hydraulic parameters and their effects on
slope stability prediction are evaluated, within the Bayesian framework, using the field measured tempo-
ral pore-water pressure data. The probabilistic back analysis and parameter uncertainty estimation is
conducted using the Markov Chain Monte Carlo simulation. A case study of a natural terrain site is pre-
sented to illustrate the proposed method. The 95% total uncertainty bounds for the calibration period are
relatively narrow, indicating an overall good performance of the infiltration model for the calibration per-
iod. The posterior uncertainty bounds of slope safety factors are much narrower than the prior ones,
implying that the reduction of uncertainty in soil hydraulic parameters significantly reduces the uncer-
tainty of slope stability.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Rainfall-induced slope failures are common in many regions un-
der tropical or subtropical climates. Valid estimation of the reduc-
tion of safety factor of a soil slope under rainfall infiltration
requires a reliable evaluation of pore water pressure distribution
and variations during rainstorm. Numerical investigations [1–3]
showed that the unsaturated soil hydraulic properties, i.e., soil–
water characteristic curve (SWCC) and unsaturated permeability
function, are the most important soil properties to influence the
pore-water pressure distribution in soil slopes under rainfall con-
dition. Pore-water pressure distributions in soils are sensitive to
relatively small variation of soil hydraulic parameters [4,5]. There-
fore, accurate estimation of soil hydraulic parameters is necessary
for assessment of slope stability under rainfall.

In geotechnical engineering, direct measurements to determine
unsaturated soil hydraulic properties are usually conducted in lab-
oratory using small samples of soils. These tests are time-consum-
ing and difficult, because a long time is required to reach a steady
state under certain suctions. However, the lab-measured hydraulic
properties may not be directly adopted in field applications, be-
cause in situ features including stratification, discontinuities and

heterogeneities in the field may not be captured by the small sam-
ples of laboratory test [6,7]. In addition, laboratory test results may
be affected by sample disturbance. Hence, numerical simulation
based on measured unsaturated soil hydraulic parameters from
laboratory tests could not match in situ transient pore-water pres-
sure responses very well and significant errors in predicted pore-
water pressure profiles and estimated safety factor of the slope
may be induced.

On the other hand, pore water pressure measurement for both
positive and negative pore pressure (i.e., soil suction) is more fre-
quently used in field monitoring programs of slope stability, be-
sides regular instrumentations for slope stability monitoring such
as displacement measurement. Field measured pore water pres-
sure data reflect real response of soils under rainfall infiltration
and can provide more representative estimates of in situ soil
hydraulic properties [8]. It is hence reasonable to use field ob-
served pore-water pressures to calibrate infiltration models and
estimate soil hydraulic parameters for a more accurate evaluation
of slope stability under rainfall condition.

Many studies have been used to back analyze soil properties
based on field performance of geotechnical structures in literature.
Most of these studies focused on soil shear strength parameters [9–
12]. Very few studies have been attempted to back analyze soil
hydraulic properties. The input information used for the back anal-
ysis is often limited to the performance of a geotechnical structure
or slope, such as the state of stability and measurement of dis-
placement. Only limited research studies are conducted with the

0266-352X/$ - see front matter � 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.compgeo.2012.09.011

⇑ Corresponding author.
E-mail addresses: lulu_zhang@sjtu.edu.cn (L.L. Zhang), zuobo2008@sjtu.edu.cn

(Z.B. Zuo), ygl@sjtu.edu.cn (G.L. Ye), D.Jeng@dundee.ac.uk (D.S. Jeng),
wjh417@sjtu.edu.cn (J.H. Wang).

Computers and Geotechnics 48 (2013) 72–81

Contents lists available at SciVerse ScienceDirect

Computers and Geotechnics

journal homepage: www.elsevier .com/ locate/compgeo

http://dx.doi.org/10.1016/j.compgeo.2012.09.011
mailto:lulu_zhang@sjtu.edu.cn
mailto:zuobo2008@sjtu.edu.cn
mailto:ygl@sjtu.edu.cn
mailto:D.Jeng@dundee.ac.uk
mailto:wjh417@sjtu.edu.cn
http://dx.doi.org/10.1016/j.compgeo.2012.09.011
http://www.sciencedirect.com/science/journal/0266352X
http://www.elsevier.com/locate/compgeo


pore-water pressure distribution or ground water level in soils as
inputs [13]. In addition, effect of uncertainties of back estimated
hydraulic parameters on prediction uncertainty of slope stability,
has yet not been clearly understood. Hence, the objective of this
paper is to assess, within the Bayesian framework, the uncertain-
ties of soil hydraulic parameters and their effects on slope stability
prediction for slopes under rainfall infiltration, using the field mea-
sured temporal pore-water pressure data. The prediction model of
slope stability for unsaturated soil slopes under rainfall condition
is composed of an analytical solution for one-dimensional rainfall
infiltration [14,15] and the slope stability analysis for infinite slope.
As the prediction model involves multiple input parameters and is
highly nonlinear, the probabilistic back analysis and parameter
uncertainty estimation is conducted using the Markov Chain
Monte Carlo (MCMC) simulation method [16], with an algorithm
entitled Different Evolution Adaptive Metropolis algorithm
(DREAM) [17], which has shown good efficiency for highly nonlin-
ear and complex high dimensional problem. A case study of a nat-
ural terrain with field measurements of rainfall and pore-water
pressures is presented to illustrate the proposed method. The ef-
fects of uncertainty reduction of soil hydraulic properties on the
predicted pore-water pressures and the safety factor of the slope
are illustrated and discussed.

2. Probabilistic parameter estimation within Bayesian
framework

Consider the n sized vector of simulated outputs Y = {y1, . . . , yn}
of a prediction model G can be written as:

Y ¼ GðXÞ ð1Þ

where X = {x1, . . . , xd} is the vector of d model parameters.
A common way to assess the model’s ability to simulate the

underlying system is to compare the vector of model outputs Y
with a vector of n observed data bY ¼ fcy1 ; . . . ;cyng by computing
the vector of residual errors e = {e1, . . . , en} with

eiðXjbYÞ ¼ yiðXÞ � byi ð2Þ

The closer to zero are the residuals, the better the model simu-
lates the observed data. However, due to errors in the initial and
boundary conditions, structural inadequacies in the model, uncer-
tainties of input model parameters and measurement errors, the
residual values of the prediction model are not expected to be
equal to zero.

The traditional approach is to force the residual error vector to
be as close to zero as possible by tuning the values of the input
parameters. However, we can only obtain optimal values of
X = {x1, . . . , xd}. Based on the Bayes theorem, multiple sources of
information such as prior distribution of X and the observed mea-
surements can be integrated in a systematic way. According to the
Bayes theorem, the posterior distribution of X is proportional to
the product of the likelihood function and the prior distribution
function [18]. Assuming the residuals in Eq. (2) are mutually inde-
pendent and Gaussian-distributed with a constant variance, r2

e , the
likelihood function is

lðX;rejbYÞ ¼Yn
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For simplicity and numerical stability, it is convenient to esti-
mate the logarithm of the likelihood function rather than the like-
lihood function itself. The log-likelihood of Eq. (3) is:
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The posterior probability density function of X and re can then
be written as follows:

f ðX;rejbYÞ ¼ c � f ðX;reÞ � lðX;rejbYÞ ð5Þ

where c is a normalizing constant, f(X, re) is the prior distribution of
X and re. With the specification of a prior distribution of parame-
ters, Eq. (5) can be used to calculate the posterior distribution.

Without the information of the observed data bY ¼ fcy1 ; . . . ;cyng,
the predicted model response can be evaluated as:

Nomenclature

c a normalizing constant of probability density function
c0 effective cohesion
d number of prediction model parameters
Fs safety factor of slope stability
H distance from the ground to the slip surface
hp pore water pressure head
hp1 prescribed pressure head at the lower boundary
J() jumping distribution or transition kernel of the Markov

Chain
k coefficient of permeability
ks saturated coefficient of permeability
L total depth of the soil
lðX;rejbYÞ likelihood function of X and re

n size of simulated outputs of a prediction model
f(X, re) prior distribution of X and re

f ðX;rejbYÞ posterior probability density function of X and re

q0 initial surface flux at the time t=0
q1(t) time-dependent surface flux
R2 coefficient of determination
Rstat Gelman and Rubin convergence diagnostic
s scale of inverse chi-square distribution
t time
ua pore air pressure
uw pore water pressure

(ua � uw) matric suction
X vector of model input parameters
X� vector of candidate point
Y vector of simulated outputsbY vector of observed data
z elevation or vertical coordinate
a desaturation rate coefficient of SWCC
b slope angle
ct total unit weight of soil
cw unit weight of water
e vector residual error
h volumetric water content
hr residual volumetric water content
hs saturated volumetric water content
kn nth positive root of the characteristic equation
rn total normal stress
r2

e variance of residual error
(rn � ua) net normal stress
U matric flux potential
Us steady state matric flux potential
/0 effective friction angle
/b friction angle of matric suction
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