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a b s t r a c t

With the rapid increases in processing speed and memory of low-cost computers, it is not surprising that
various advanced computational learning tools such as neural networks have been increasingly used for
analyzing or modeling highly nonlinear multivariate engineering problems. These algorithms are useful
for analyzing many geotechnical problems, particularly those that lack a precise analytical theory or
understanding of the phenomena involved. In situations where measured or numerical data are available,
neural networks have been shown to offer great promise for mapping the nonlinear interactions (depen-
dency) between the system’s inputs and outputs. Unlike most computational tools, in neural networks no
predefined mathematical relationship between the dependent and independent variables is required.
However, neural networks have been criticized for its long training process since the optimal configura-
tion is not known a priori. This paper explores the use of a fairly simple nonparametric regression algo-
rithm known as multivariate adaptive regression splines (MARS) which has the ability to approximate the
relationship between the inputs and outputs, and express the relationship mathematically. The main
advantages of MARS are its capacity to produce simple, easy-to-interpret models, its ability to estimate
the contributions of the input variables, and its computational efficiency. First the MARS algorithm is
described. A number of examples are then presented that explore the generalization capabilities and
accuracy of this approach in comparison to the back-propagation neural network algorithm.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Many geotechnical engineering problems rely on the use of
empirical methods expressed in the form of equations or design
charts, to determine the response of the system to input variables.
This is usually because of an inadequate understanding of the
physical phenomena involved in the multivariate problem, or the
system is too complex to be described mathematically. A typical
example is the determination of the undrained frictional resistance
of piles in clay. Based on field load test data, empirical methods
have been proposed in which the adhesion is related to the un-
drained shear strength as well as other factors such as the pile
length by an empirical coefficient.

For problems involving several design (input) variables and
nonlinear responses, particularly with statistically dependent in-
put variables, regression methods are usually adopted. However,
regression models become computationally impractical for prob-
lems involving a large number of design variables, particularly
when mixed or statistically dependent variables are involved. An-
other criticism of regression methods lies in their strong model
assumptions.

An alternative soft computing technique is the use of artificial
neural networks (ANNs). An ANN has a parallel-distributed archi-
tecture with a number of interconnected nodes, commonly re-
ferred to as neurons. The neurons interact with each other via
weighted connections. Each neuron is connected to all the neurons
in the next layer. By far the most commonly used ANN model is
known as the back-propagation (BP) algorithm [1]. In the BP algo-
rithm, the ANN ‘‘learns’’ the complicated model relationship from
examples of input and output patterns through modifying the con-
nection weights to reduce the errors between the actual output
values and the target output values. This is carried out by minimiz-
ing the defined error function (e.g., sum squared error) using the
gradient descent approach. Validation of neural network perfor-
mance is carried out by ‘‘testing’’ with a separate set of data that
was never used in training process, to assess the generalization
capability of the trained neural network model to produce the cor-
rect input–output mapping.

Generalization is influenced by factors such as the size of the
training data, how representative the data is of the problem to
be considered, and the physical complexity of the problem. Finding
the optimal BP architecture is also important. The BP algorithm has
been criticized for its computational inefficiency i.e. long process to
determine the optimal network configuration since this is not
known a priori. Too few hidden neurons may mean that the net-
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work is unable to model the nonlinear problem correctly. An exces-
sive number of neurons will result in unnecessary arithmetic cal-
culations and high computation cost and may cause a
phenomenon called ‘‘overfitting’’, in which the network learns
insignificant aspects of the training set i.e. the intrinsic noise in
the data. Determining the optimal number of hidden neurons is
commonly carried out by a trial-and-error approach through
repeatedly increasing the number of hidden neurons till no further
improvement in the network performance is obtained. Aside from
finding the optimal number of hidden neurons and the number of
hidden layers, finding the optimal BP architecture is a difficult task
that also involves determining the optimal transfer function and
learning rate, as well as the maximum number of training cycles
(epochs), all of which require considerable computational effort.
Various self-pruning NN algorithms have also been proposed, for
example initially starting with a network that is a purposely overfit
model, and then trimming it down to the appropriate size. How-
ever, neural networks implemented with these algorithms are gen-
erally just as computationally intensive since retraining is required
each time a hidden neuron or weighted connection is removed.

As highlighted by Shahin et al. [2], ANN has been successfully
applied to a number of geotechnical engineering problems includ-
ing pile capacity, settlement of foundations, soil properties and
behavior, liquefaction, site characterization, earth retaining struc-
tures, dams, blasting and mining, slope stability, geoenvironmental
engineering, rock mechanics, tunneling and underground caverns.

This paper explores the use of another promising procedure
known as multivariate adaptive regression spline (MARS) [3] to
model nonlinear and multidimensional relationships. As with neu-
ral networks, no prior knowledge of the form of the function is re-
quired in MARS. The main advantages of MARS are its capacity to
find the complex data mapping in high-dimensional data and pro-
duce simple, easy-to-interpret models, and its ability to estimate
the contributions of the input variables. Previous applications of
MARS algorithm in civil engineering include modeling doweled
pavement performance, predicting shaft resistance of piles in sand,
estimating deformation of asphalt mixtures, analyzing shaking ta-
ble tests of reinforced soil wall, and determining the undrained
shear strength of clay [4–9]. In this paper, a number of examples
are presented to demonstrate the function approximating capacity
of MARS and its efficiency in a noisy data environment. In addition,
comparative performance of the predictions between BP and MARS
were carried out for six practical examples in geotechnical
engineering.

2. Details of MARS

MARS is a nonlinear and nonparametric regression method that
models the nonlinear responses between the inputs and the output
of a system by a series of piecewise linear segments (splines) of dif-
fering gradients. No specific assumption about the underlying
functional relationship between the input variables and the output
is required. The end points of the segments are called knots. A knot
marks the end of one region of data and the beginning of another.
The resulting piecewise curves (known as basis functions), give
greater flexibility to the model, allowing for bends, thresholds,
and other departures from linear functions.

MARS generates basis functions by searching in a stepwise
manner. An adaptive regression algorithm is used for selecting
the knot locations. MARS models are constructed in a two-phase
procedure. The forward phase adds functions and finds potential
knots to improve the performance, resulting in an overfit model.
The backward phase involves pruning the least effective terms.
An open source code on MARS from Jekabsons [10] is used in car-
rying out the analyses presented in this paper.

Let y be the target output and X = (X1, . . . ,XP) be a matrix of P in-
put variables. Then it is assumed that the data are generated from
an unknown ‘‘true’’ model. In case of a continuous response this
would be

y ¼ f ðX1; . . . ;XPÞ þ e ¼ f ðXÞ þ e ð1Þ

in which e is the distribution of the error. MARS approximates the
function f by applying basis functions (BFs). BFs are splines (smooth
polynomials), including piecewise linear and piecewise cubic func-
tions. For simplicity, only the piecewise linear function is expressed.
Piecewise linear functions are of the form max(0, x � t) with a knot
occurring at value t. The equation max(.) means that only the posi-
tive part of (.) is used otherwise it is given a zero value. Formally,

maxð0; x� tÞ ¼
x� t; if x P t

0; otherwise

�
ð2Þ

The MARS model f(X), is constructed as a linear combination of
BFs and their interactions, and is expressed as

f ðXÞ ¼ b0 þ
XM

m¼1

bmkmðXÞ ð3Þ

where each km(X) is a basis function. It can be a spline function, or
the product of two or more spline functions already contained in
the model (higher orders can be used when the data warrants it;
for simplicity, at most second-order is assumed in this paper). The
coefficients b are constants, estimated using the least-squares
method.

Fig. 1 shows a simple example of how MARS would use piece-
wise linear spline functions to attempt to fit data. The MARS math-
ematical equation is expressed as

y ¼ 4:4668þ 1:1038 � BF1� 3:997 � BF2þ 1:967 � BF3 ð4Þ

where BF1 = max(0, x � 16), BF2 = max(0, 16 � x) and BF3 = max(0,
25 � x). The knots are located at x = 16 and 25. They delimit three
intervals where different linear relationships are identified.

The MARS modeling is a data-driven process. To fit the model in
Eq. (3), first a forward selection procedure is performed on the

Fig. 1. Knots and linear splines for a simple MARS example.

Table 1
Calculation of error measures.

Measure Calculation

Coefficient of determination (R2)
R2 ¼ 1�

1
n

Pn

i¼1
ðyðiÞ�f ðxðiÞ ÞÞ2

1
n

Pn

i¼1
ðyðiÞ�yÞ2

Mean Squared Error (MSE) MSE ¼ 1
n

Pn
i¼1ðyðiÞ � f ðxðiÞÞÞ2

Mean Absolute Error (MAE) MAE ¼ 1
n

Pn
i¼1jyðiÞ � f ðxðiÞÞj

y is the mean of the target values of y(i); f(x(i)) is model predictions; n denotes the
number of data points in the used set, training or testing set.
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