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a b s t r a c t

Collapse mechanisms consisting of sliding rigid blocks are used widely as the basis for computing bounds
on limit loads in geotechnical and structural engineering problems. While these mechanisms are concep-
tually straightforward to analyze, evaluating kinematically admissible velocities for a particular arrange-
ment of blocks can be a tedious process, and optimizing the geometry of the mechanism is often
prohibitively cumbersome for more than a few blocks. In this paper, we present a numerical technique
for evaluating and optimizing mechanisms composed of an arbitrary number of sliding triangular blocks,
assuming plane strain and homogenous, ponderable material obeying the Mohr–Coulomb yield condi-
tion. In the proposed method, coordinates defining the vertices of the blocks are treated as unknowns,
and the optimal geometry is found by successively perturbing the vertex coordinates and block velocities,
starting initially from a user-specified arrangement of blocks. The method is applied to three different
examples related to geotechnical engineering, each of which illustrate that the approach is an efficient
way to evaluate bounds that are often close to the true limit load.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The kinematic method of limit analysis is a well-established
technique for evaluating bounds on limit loads for engineering
structures. As discussed in detail by Chen [1], the method pertains
to materials that can be idealized as perfectly plastic with associated
plastic flow, and it rests on constructing a kinematically admissible
velocity field (i.e., collapse mechanism) in which strain rates every-
where satisfy the plastic flow rule and velocities satisfy boundary
conditions. For any kinematically admissible mechanism, the limit
load computed by balancing the rate of dissipation by plastic defor-
mation to the rate of work done by external forces is a rigorous
bound on the true limit load. The bound is an upper bound for loads
inducing collapse and a lower bound for loads resisting collapse.
Regrettably, the kinematic method has come to be known more
commonly as ‘‘upper bound limit analysis,’’ which in many in-
stances belies the nature of the analysis and the computed bound.

The kinematic method is most often implemented in one of two
forms. The first, here referred to as the ‘‘analytical method,’’ relies
on postulating and geometrically constructing an admissible
collapse mechanism (e.g., [2–10]). This approach typically fur-

nishes a closed-form expression of the limit load that includes un-
known parameters characterizing the geometry of the mechanism,
and the objective is then to assess the values for which the com-
puted limit load is optimal, thereby bracketing the true limit load
as closely as possible. For simplicity, it is common to assume a
mechanism consisting of sliding or rotating rigid blocks separated
by transition layers of infinitesimal thickness across which the
velocity is discontinuous (i.e., velocity discontinuities). In such a
‘‘rigid block mechanism,’’ the interior angles of the blocks repre-
sent the unknown geometric parameters to be optimized. When
the collapse mechanism consists of only a few rigid blocks or fol-
lows a special pattern, it is possible to evaluate the optimal geom-
etry analytically or using straightforward numerical techniques. In
general, however, the analytical method is impracticable when the
number of blocks is large.

The second, purely numerical form of limit analysis is so-called
finite element limit analysis (FELA). The central idea of FELA is to
subdivide the entire problem domain into a number of elements
over which the complete velocity field is obtained by interpolating
discrete values at nodal points (e.g., [11–18]). By assigning each
element a unique set of nodes, velocity discontinuities correspond-
ing to element edges are also permitted. Whereas the velocity field
in the analytical method is kinematically admissible by construc-
tion, admissibility in FELA is ensured only by introducing a large
set of constraints on the otherwise arbitrary velocity field as part
of the procedure for optimizing the limit load. Unlike the analytical
method, the constrained optimization problem emerging in FELA
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can be solved using large-scale mathematical programming (e.g.,
linear or nonlinear programming), allowing for a virtually arbitrary
number of elements. When velocities are assumed constant within
elements, the velocity field in FELA reverts to a rigid block mecha-
nism, and several studies have demonstrated the effectiveness of
such an approach [19–22].

Even when continuous deformation is permitted in the collapse
mechanism, the majority of plastic dissipation typically occurs
along velocity discontinuities, and therefore determining their
optimal locations is essential. In the analytical method, the optimi-
zation process is tantamount to finding these locations. However,
the accuracy of this method is often limited by the number of
blocks that can be practically analyzed, and a generally accepted
method for optimizing mechanisms with a large number of blocks
in an arbitrary arrangement has yet to be established. In FELA, the
need to define the placement of (potential) velocity discontinuities
a priori is a basic shortcoming of the approach, as it is unlikely that
the element edges will coincide with the optimal locations. The
leading approach for overcoming this drawback is to use aniso-
tropic mesh adaptivity, which locally refines the finite element
mesh based on estimates of the velocity gradient and the Hessian
matrix [23]. Resolving the optimal locations of velocity discontinu-
ities using mesh adaptivity therefore relies on introducing a poten-
tially large number of additional elements through the course of
multiple iterations.

Two different approaches for directly optimizing the locations
of velocity discontinuities in a collapse mechanism can be found
in the literature, and both pertain to rigid block mechanisms. The
first is known as discontinuity layout optimization (DLO) [24],
and it is based on identifying the optimal connectivity of potential
velocity discontinuities spanning a fixed grid of nodes [24]. The
second approach rests on first evaluating an admissible collapse
mechanism using methods similar to those utilized in FELA and
then optimizing its geometry by a series of small adjustments, or
perturbations, using sequential linear programming [25], a concept
first introduced by Johnson [26] for rigid-plastic analysis of con-
crete slabs. While both DLO and the approach based on sequential
linear programming have proven to be effective in analyzing stabil-
ity problems, an advantage of the latter is that it can resolve the
optimal locations of velocity discontinuities anywhere in space.
In DLO, velocity discontinuities must always span two nodes, and
the resolution therefore depends on the grid spacing.

This paper expands on the method introduced by Milani and
Lourenço [25] and presents a new computational approach for
optimizing rigid block mechanisms consisting of an arbitrary
number of sliding triangular blocks. The approach utilizes large-
scale mathematical programming firstly to compute admissible
velocities for an initial, user-specified arrangement of blocks and
then to optimize the geometry of the mechanism through a se-
quence of successive perturbations. As compared to the method
described by Milani and Lourenço [25], key enhancements are
as follows:

1. Within each perturbation step, the optimization problem is
cast concisely as a second-order cone programming prob-
lem, rather than a linear programming problem.

2. The formulation includes a simple means for ensuring that
the mechanism remains valid within each perturbation step.

3. A strategy for progressively adjusting the magnitude of the
perturbations and a corresponding stopping criterion are
proposed.

4. Material self-weight, which is essential for geotechnical
problems, is included.

Milani and Lourenço [25] also considered rotating blocks whose
edges are defined by Bézier curves, although such a mechanism is

generally inadmissible and does not furnish a rigorous bound. Here
it is assumed that the blocks possess straight edges and do not
rotate.

The proposed formulation pertains to plane strain and material
obeying the Mohr–Coulomb yield condition and, as a matter of
convenience, it is assumed that the limit load induces, rather than
resists, collapse. Therefore, all computed bounds are upper bounds.
Extension to the case of lower bounds on loads resisting collapse is
straightforward. A rudimentary version of the proposed approach,
without features (2)–(4) above, was presented in an earlier confer-
ence paper by the authors [27].

In the next section, an approach for computing admissible
velocities for a predefined arrangement of sliding rigid blocks is
presented. In Section 3, the formulation for a fixed arrangement
of blocks is adapted so that the mechanism geometry is optimized
through successive perturbation. Section 4 is devoted to examples,
and the penultimate section presents observations about the ap-
proach and possible areas of future research.

2. Rigid block mechanism of fixed geometry

The starting point for the formulation is to subdivide the prob-
lem domain into a number of contiguous triangular blocks (ele-
ments). As a convention, each vertex (node) in the assembly is
identified by index i, where i = 1, 2, ...,NV, and each block is identi-
fied by index j, where j = 1, 2, ...,NB. The Cartesian coordinates of
vertex i are denoted by xi and yi, and components of velocity in
block j are vx,j and vy,j.

With the exception of edges on free boundaries, each edge in
the arrangement of blocks represents a potential velocity disconti-
nuity. Velocity discontinuities are denoted by index k, where k = 1,
2, ...,NE, and the local quantities associated with a particular discon-
tinuity are as shown in Fig. 1. The vertices S and N are the ‘‘south’’
vertex and ‘‘north’’ vertices, respectively, and the blocks on either
side of the discontinuity are similarly denoted by E and W, which
indicate the ‘‘east’’ and ‘‘west’’ blocks. Using this convention, which
is independent of the discontinuity’s orientation, the following
vectors containing local quantities for discontinuity k are defined

xk ¼ ½xS yS xN yN�
T
; vk ¼ ½vx;E vy;E vx;W vy;W �T ð1Þ

In Eq. (1), x and y are the coordinates of the local vertices, with the
subscript indicating the vertex, and vx and vy are the components of
velocity in adjacent blocks, with the subscript indicating the block.
When material on one side of the discontinuity is at rest, compo-
nents of velocity on that side are simply taken as zero.

For kinematic admissibility, the following jump condition must
be imposed at each velocity discontinuity (see, for instance [1])

Fig. 1. Local vertex and block designations for a velocity discontinuity between two
adjacent blocks.
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