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a b s t r a c t

We present the results of lattice Boltzmann (LB) simulations for the planar-flow of viscoplastic fluids
through complex flow channels. In this study, the Bingham and Casson model fluids are covered as
viscoplastic fluid. The Papanastasiou (modified Bingham) model and the modified Casson model are
employed in our LB simulations. The Bingham number is an essential physical parameter when consid-
ering viscoplastic fluid flows and the modified Bingham number is proposed for modified viscoplastic
models. When the value of the modified Bingham number agrees with that of the “normal” Bingham
number, viscoplastic fluid flows formulated by modified viscoplastic models strictly reproduce the flow
behavior of the ideal viscoplastic fluids. LB simulations are extensively performed for viscoplastic fluid
flows through complex flow channels with rectangular and circular obstacles. It is shown that the LB
method (LBM) allows us to successfully compute the flow behavior of viscoplastic fluids in various
complicated-flow channels with rectangular and circular obstacles. For even low Re and high Bn numbers
corresponding to plastic-property dominant condition, it is clearly manifested that the viscosity for both
the viscoplastic fluids is largely decreased around solid obstacles. Also, it is shown that the viscosity pro-
file is quite different between both the viscoplastic fluids due to the inherent nature of the models. The
viscosity of the Bingham fluid sharply drops down close to the plastic viscosity, whereas the viscosity
of the Casson fluid does not rapidly fall. From this study, it is demonstrated that the LBM can be also
an effective methodology for computing viscoplastic fluid flows through complex channels including
circular obstacles.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The understanding of non-Newtonian fluid flows through
porous media is of principal significance in various science and
engineering processes. A few examples are non-Newtonian flows in
packed beds, non-Newtonian flows through a fiber material, filtra-
tion and purification processes in chemical, petroleum and polymer
engineering fields. The exploration of non-Newtonian fluid flows
is a far from easy issue because of the complex rheological prop-
erties. Hence, a detailed understanding of non-Newtonian fluid
flows requires consideration from various aspects and this type of
research is an interdisciplinary subject. In terms of fluid dynamics,
a key factor to exploring structures and mechanisms of non-
Newtonian fluids is to perceive a local profile of non-Newtonian
properties corresponding to the shear-rate. An approach based on
computational fluid dynamics (CFD) can be effective for revealing
the local non-Newtonian properties because important physical
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information specific to non-Newtonian fluids can be locally esti-
mated and we can reveal the role and state of non-Newtonian
properties by numerical simulation.

Over the last two decades, the lattice Boltzmann method (LBM)
[1–4] has been aggressively developed as an alternative approach
to common numerical methods based on the direct discretiza-
tion of the incompressible Navier–Stokes equations. Important
advantages of the LBM are simplicity of programming, parallelism
potential of algorithm, easy grid generation, straightforward imple-
mentation (i.e., streaming and collision), and the LBM can be also
easily applied to complex geometries. An essential advantage of
the LBM is that it is suitable for solving flow problems involving
complicated boundary geometries. Now the LBM has become an
established numerical technique for simulating single-phase and
multiphase fluid flows in complex geometries [2].

The first attempt applying the LBM to simulation of non-
Newtonian fluid flows was carried out by Aharonov and Rothman
[5]. They demonstrated the applicability of the LBM to power–law
model [6] fluids. Results of LB simulations for the power–law
model fluids have been given by a number of researchers [7–15]
since the work of Aharonov and Rothman [5]. Although the power
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law model has the disadvantage which the viscosity of the power
law model can be potentially infinite at low shear-rate regions,
these studies would be very valuable for understanding the most
essential effect of shear-thinning fluids. Meanwhile, viscosity
models including the zero shear-rate viscosity �0 and the infinite
shear-rate viscosity �∞ are much more practical because shear-
thinning and shear-thickening fluids generally have Newtonian
plateaus with �0 and �∞.

Kehrwald [16] carried out the LB simulation for shear-thinning
fluids using the Cross model [17] with �0 and �∞. From a mathe-
matical standpoint, the Carreau–Yasuda model [18] is best suited
to express the viscosity property of shear-thinning and shear-
thickening fluids. In the computational study, the choice of the
Carreau model [19] is reasonable for shear-thinning and shear-
thickening fluids. LB simulations for the Carreau model fluids have
been presented by Yoshino et al. [20] and Malaspinas et al. [21].
Recently, with a focus on human blood flow, non-Newtonian sim-
ulations using the LBM have also been considered by a number of
researchers [22–28]. The Carreau–Yasuda model [18] and the Cas-
son model [29] are commonly used to simulate blood flows. As
examples of the applicability of the LBM to other non-Newtonian
fluids, we can find some computational results for viscoplastic
fluid flows. Ginzburg and Steiner [30] considered the LB simula-
tion of viscoplastic fluid flows with the free surface. In their study,
the Papanastasiou model [31] was used for viscoplastic liquids.
Similarly, using the Papanastasiou model [31], Wang and Ho [32]
presented the results of LB simulation for the flow of the Bingham
fluid [33] in an abrupt expansion planar channel. Vikhansky [34]
proposed an improved LBM for simulating the flow of the Bingham
fluid and showed LB simulations for Bingham fluid flows through
channels including a cylindrical obstacle. In the study of Vikhansky
[34], the “ordinal” Bingham model [33] was employed. We note that
Barnes and Walters [35] demonstrated that the yield stress concept
is an idealization and that no yield stress exists, but the issue of the
existence of yield stress has been disputed [35–40].

As just described, in the past decade or so, the application of the
LBM to non-Newtonian fluid flows has been intensified and much
progress has been reported in simulating non-Newtonian fluid
flows involving complex boundaries. Nevertheless, there remain
several problems to be considered. The present study focuses on
the planar-flow of viscoplastic fluids through various complex flow
channels including rectangular and circular obstacles. The Bingham
and Casson models are adopted for viscoplastic fluids, and the flow
behavior for such viscoplastic fluids are considered by computa-
tional results obtained by using the LB simulation. Major novelties
of our study different from previous LB simulations for viscolastic
fluids [30,32,34] are (1) to target two kinds of viscoplastic fluid
which are described by modified Bingham and Casson models
based on the Papanastasiou-type expression, and (2) to consider
the flow of both the viscoplastic fluids through complex channels
including circular obstacles. Finally, we show the effectiveness of
the LB simulation for computing viscoplastic fluid flows in complex
channels and discuss flow situations depending on both the models
when both viscoplastic fluids flow through complex channels.

2. Numerical method

2.1. Lattice Boltzmann method

In this study, we cover incompressible fluid flows and a nine-
velocity model on a two-dimensional lattice (D2Q9) as shown in
Fig. 1. Here D is the spatial dimension and Q refers to the num-
ber of different velocities at a node. In the LBM, the fluid behavior
is described by the particle distribution function fi(x, t) giving the
probability that a fictitious fluid particle with velocity ei enters the
lattice site x at time t. Here, the subscript “i” expresses the number

Fig. 1. Direction system and discrete velocity vectors in the D2Q9 model. Direction
“0” corresponds to a rest state.

of lattice links and i = 0 corresponds to the particle at rest residing
in the center (see Fig. 1). The evolution of the particle distribu-
tion function on the lattice resulting from the collision processes
and the particle propagation is governed by the discrete Boltzmann
equation:

fi(x + ei�t, t + �t) − fi(x, t) = ˝i(x, t) (i = 0, 1, . . . , 8), (1)

where �t is the time step and ˝i is the collision operator which
accounts for the rate of change in the distribution function due to
the collisions. In our LB computations, the Bhatnagar–Gross–Krook
(BGK) model [41,42], which utilizes a simple relaxation for compli-
cated collisions [43], is used for the collision operator.

˝i(x, t) = − 1
�

[fi(x, t) − f (eq)
i

(x, t)] (i = 0, 1, . . . , 8), (2)

where � is the non-dimensional relaxation time and is related to
the kinematic viscosity � by

� = c2
S �t

(
� − 1

2

)
. (3)

Here cS is the sound speed expressed by cS = �x/30.5�t = c/30.5 (c
is the particle speed and �x is the lattice spacing). The constant c
can be freely chosen and we take c = �x = �t = 1 in this study. All
physical quantities are rendered dimensionless using �x and �t as
the characteristic scales.

In our computations, �(x, t) is calculated at each node using Eq.
(4) because �(x, t) is locally changed as a function of the shear-rate
�̇:

�(x, t) = 3�(x, t) + 1
2

= 3�(x, t)
�(x, t)

+ 1
2

. (4)

Here �(x, t) is the apparent viscosity of viscoplastic fluids which
will be explained in the next section and �(x, t) is the density.
Also, fi(eq)(x, t) in Eq. (2) is the corresponding equilibrium distri-
bution function. The equilibrium form for the D2Q9 lattice is given
as follows:

f (eq)
i

(x, t) = wi�(x, t)

[
1 + 1

c2
S

(ei · u(x, t)) + 1

2c4
S
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]
, (5)
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