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a b s t r a c t

To interpret the viscoelastic behaviour of entangled linear polymers in terms of dynamics of a single
macromolecule, we have been developing the approach, which allows one to study systematically devia-
tions from the Rouse dynamics, when adding non-Markovian and anisotropic noise. It was shown earlier,
that the introduction of specific form of non-Markovian dynamics leads to emerging of an intermediate
length, which has the meaning of a tube radius and/or the length of a macromolecule between adja-
cent entanglements. The additional introduction of local anisotropy of mobility of particles allows one
to get the results of the conventional reptation-tube model for both mobility and relaxation times of
macromolecular coil and, beyond it, to estimate a transition point between weakly (the length of macro-
molecules M< 10Me, no reptation) and strongly (the length of macromolecules M> 10Me, reptation)
entangled polymer systems. The adequate mesoscopic equation allows us to develop theory of different
relaxation phenomena, in particular, a theory of viscoelasticity and to formulate constitutive equations
for linear polymers, which, due to the difference of mechanisms of relaxation, appear to be different for
the two types of entangled systems.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

A system of macromolecules with the molecular weights
(lengths) above 2Me, whereMe is ‘the molecular weight (length) of
a macromolecule between adjacent entanglements’, is used to be
called the system of entangled macromolecules [1–3]. To explain
the empirical facts of macromolecular mobility, one has to con-
sider two modes of motion of separate macromolecules in the
systems of entangled macromolecules: diffusive isotropic and rep-
tation anisotropic [1], which determine, as we have shown earlier
[4], two kinds of systems with different predominant relaxation
mechanisms of macromolecules in the system. In the strongly
entangled linear polymers (M> 10Me), relaxation of separate
macromolecules is realised through reptation—these are systems
to which the results of conventional reptation-tube theory [2]
and its modifications [6–8] can be applied, while, in the weakly
entangled systems (M< 10Me), the reptation is absent, the relax-
ation of macromolecules is realised through isotropic diffusion
of particles of macromolecules. Recently [4,5], we attempted to
find such a formal unified equation for dynamics of individual
macromolecules in the system, which could explain all peculiar-
ities of dynamic behaviour of the system in the region above 2Me.
Indeed, the proposed model allowed one to get a consistent inter-
pretation of experimental data for diffusion and conformational
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relaxation of linear macromolecules in the systems of entangled
macromolecules [5]. The proposed theory could be considered as an
attempt to formalise the common knowledge about the dynamics of
a macromolecule; in any case, it recovers (with some corrections)
the results of the conventional reptation-tube model, that is the
confinement of a macromolecule in the tube and easier (reptation)
motion of the macromolecule along its contour—the features, which
were envisaged originally by Edwards [9] and de Gennes [10] for
entangled systems. The considered model is a non-Markovian and
non-linear generalisation of the Rouse dynamics that allows one to
describe stochastic dynamics of a macromolecule in an entangled
system, so that, to stress the difference to the Doi–Edwards model,
which operates with mean quantities, the model can be called a
model of underlying stochastic motion.

In this paper, we intend to apply the unified equations of macro-
molecular dynamics for derivation of the constitutive equations of
the systems. In Section 2, the fundamentals of dynamics of a macro-
molecule in the system of macromolecules are discussed and the
linear normal modes of the system are described. We have no possi-
bility to collect all details here: some of them can be found in other
places [3–5] and in the original papers cited there. The purpose of
this Section is to discuss the foundations and main features of the
mesoscopic approach for both weakly and strongly entangled sys-
tems. In Section 3, linear dynamics of entangled systems will be
considered in linear approximation of macromolecular dynamics.
We shall not be able here to presents the results on the base of
non-linear unified model and have to be restricted to a discussion
of linear dynamics. The results for dynamic modulus shows that
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the linear approximation of macromolecular dynamics allows us to
calculate correctly terminal properties for both weakly and strongly
systems, but is non-sufficient to describe adequately dynamic mod-
ulus in the whole region of frequencies. In Section 4, we shall
consider, rectifying our previous results [11], constitutive relations
for weakly entangled systems and discuss its consequences for two
simple cases: simple shear and simple elongation. A sample of
identification of a weakly entangled system is given. The Section
5 contains a discussion of the problem.

2. Dynamics of a macromolecule in an entangled system

It is known [2,3], that every flexible macromolecule can be effec-
tively presented as a chain of coupled Brownian particles (so called
bead and spring model). To reduce the problem of many interacting
chains, one can follow Zwanzig–Mori method, described, for exam-
ple, in monographs [12,13] to derive a dynamic equation for a single
chain in a system of entangled chains. A direct solution of the prob-
lem of simultaneous motion of many macromolecules, which could
bring an answer, appeared to be a rather difficult problem. As far as
we know, accurate results are available only for short chains [14],
when reptation motion is not expected. Considering longer macro-
molecules, one can refer to the Mori–Zwanzig projector operator
technique, as a possible foundation of the approach, and say that it
is natural to present the anticipated dynamic equation for a chain
as stochastic equation with memory function terms. The dynamics
of a probe macromolecule in an entangled system can be sim-
plified by the assumption that the neighbouring macromolecules
are described as a uniform non-structural medium and all impor-
tant interactions can be reduced to intramolecular interactions, so
that large-scale stochastic dynamics of a single macromolecule in
the entangled system can be considered as dynamics of effective
Brownian particles.

2.1. A non-Markovian form of dynamic equations

To present a general form of the equation of dynamics of a probe
macromolecule in an entangled system [3], the situation can be
considered in an approximation, which is linear to respect to veloc-
ities, while the mutual hydrodynamic interaction of the particles
can be omitted, so that effective dynamics of a single chain, as the
dynamics of coupled Brownian particles, is described by a set of the
coupled stochastic equations:

m
d2r˛

i

dt2
= −�(ṙ˛i − �ijr˛j ) + F˛i + G˛i − 2�TA˛�r
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+ �˛i (t),

˛ = 0,1,2, . . . , N, (1)

where m is the mass of a Brownian particle associated with a
piece of the macromolecule of length M/N, r˛ and ṙ˛ = u˛ are the
coordinates and velocity of the Brownian particle and 2T� is the
coefficient of elasticity of ‘a spring’ between adjacent particles, T is
temperature in energy units. The matrixA˛� depicts the connection
of Brownian particles in the entire chain and has the form:
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The dissipative forces in Eq. (1) are introduced by three
terms, the first of which, −�u�

j
, presents the resistance from the

‘monomeric’ liquid, and the others, F˛
i

and G˛
i

present the effec-
tive forces from the neighbouring macromolecules and satisfy the
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where � is a relaxation time of effective medium surrounding every
particle. The simplest case assumes that one chooses the single time
of relaxation. The introduced relaxation time � coincides with the
terminal viscoelastic relaxation time, which means that the theory
is characterized by self-consistency. The matrixes H˛�

ij
and G˛�

ij
in

Eqs. (3) and (4) determine the mutual influences on motion of the
particles of the chain. In Section 2.3, a few particular choices of the
matrixes will be discussed.

The force F˛
i

is a hydrodynamic drag force in the medium moving
with mean velocity gradient �ij , so that a particle located at a point
with co-ordinates r˛

j
is dragged with velocity �ijr˛j . The second force

G˛
i

is a force of internal resistance with the property:

N∑
˛=0

G˛i = 0, i = 1,2,3. (5)

This force, defined by Eq. (4), represents the intramolecular
resistance (kinetic stiffness) of the coil and, due to the vorticity
term ωil = 1/2(�il − �li), does not depend on the rotation of the
macromolecular coil as a whole.

The above dynamic equations were designed [3] to describe
effects in entangled systems, that is in the systems consisting of
macromolecules of lengthM> 2Me, whereMe is ‘the length of the
macromolecule between adjacent entanglements’, though in the
case, when B = 0 and E = 0, the considered equations describe the
Rouse dynamics of macromolecule in a viscous liquid. For entangled
systems, the coefficients B and E in Eqs. (3) and (4) are introduced
as measures of intensities of the external and internal extra dissi-
pative forces, connected with the neighbouring macromolecules.
The dependence of the quantity B on the length of macromolecules
can be estimated [4] by using simple picture of overlapping coils
[15] or the constraint-release mechanism [16]. In either case the
dependence of the quantity on the length of neighbouring macro-
moleculesM0 (it is helpful for the analysis to distinguish this from
the length M of the probe macromolecule, even if all of them are
equal) can be approximated as a power function:

B∼Mı0. (6)

The estimates determine value of the index 2 or 3, but the empir-
ical value, according to dependence of the coefficient of viscosity on
the length of macromolecules, is ı = 2.4. The measure of internal
resistance E of a macromolecule is small for entangled systems of
short macromolecules, but, for long macromolecules, the quantity
has an asymptotic dependence:

E∼Mı0M. (7)

For the considered, linear in velocities, case, the correla-
tion functions of the stochastic forces in the system of Eq. (1)
can be easily determined from the requirement that, at equilib-
rium, the set of equations must lead to well-known results (the
fluctuation–dissipation theorem). It is readily seen that, according
to the general rule [17]:
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