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a b s t r a c t

A novel approach for modeling the mechanical behavior of thixotropic viscoplastic fluids is presented.
Non-monotonic flow curves, stress overshoot during microstructure breakdown flows at constant shear
rate, and viscosity bifurcation are some of the common aspects of structured fluids that are predicted by
the new model. It involves two evolution equations, one for the stress and the other for the structure
parameter. Simple ideas are employed to describe the microstructure, and, as a result, a model with a clear
physical basis is obtained. In addition to the flow curve, which by construction is exactly predicted, it is
shown that the model is able to predict correctly the behavior observed in the usual rheometric transient
flows, among which abrupt changes in shear rate (microstructure buildup or breakdown experiments)
and abrupt changes in shear stress (viscosity bifurcation experiments). The model is frame-indifferent
and applicable to complex flows.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Structured fluids are found in a wide range of human activities.
Most suspensions, emulsions, and foams are structured fluids, and
some examples are: personal care products, cosmetics, different
foods, nanocomposites, paints, inks, cements, adhesives, greases,
natural muds, drilling muds, crude oils, gels, and mining, coal and
metal slurries.

Structured fluids exhibit non-Newtonian mechanical behavior.
At small stress levels, their microstructure often confers them an
elastic behavior. In this case, beyond a certain stress threshold, usu-
ally called yield stress, a major microstructure collapse occurs which
causes dramatic drops in viscosity and elasticity.

While under constant stress conditions for some long enough
period of time, the microstructure of a structured fluid usually
acquires a stable configuration, which is the result of the equilib-
rium between the microstructure buildup and breakdown rates. If
the microstructure changes do not occur instantaneously after a
stress change, the structured fluid is said to be time-dependent.
A time-dependent fluid is said to be thixotropic if its viscos-
ity decreases/increases with time as it undergoes a shear rate
increase/decrease, and if in addition these viscosity changes are
reversible. On the other hand, a time-dependent fluid is said to be
antithixotropic if its viscosity increases/decreases with time as it
undergoes a shear rate increase/decrease, and if in addition these
viscosity changes are reversible.
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Most structured fluids that exhibit a yield stress are time-
dependent, especially in the small stress range. Some extent of
irreversibility in the microstructure changes is also often observed,
but modeling and characterizing the mechanical behavior of irre-
versible structured fluids are rather difficult tasks (e.g. [20]).
Actually, as far as their mechanical behavior is concerned, even
thixotropic fluids are far from being thoroughly understood [15].

Barnes [4] published a detailed review of thixotropy, where he
described the phenomenon, discussed numerous examples, sum-
marized its history, and gave an overview of the state of the art.
In this review, Barnes [4] pointed out that most of the then avail-
able theories only described the viscous thixotropic phenomenon,
and that only a few attempted to describe viscoelastic effects. He
grouped the viscous theories into three different categories: first
those that employ the so-called structure parameter, usually �,
a scalar quantity that typically varies in the interval [0, 1] and
represents an indirect measure of the level of structuring (these
are usually called structural kinetics models); second those that
use some direct information of the microstructure, usually called
microstructural models; and third those just based on viscosity-time
data.

As an example of viscoelastic model, Barnes [4] cited the one
set forth by Acierno et al. [1–3], although these workers focused on
low-density polyethylene rather than on thixotropic fluids. They
proposed a multimode Maxwell-type differential equation set for
stress whose relaxation times and shear moduli depend on a struc-
ture parameter.

Mujumdar et al. [17] also gave a thorough discussion of
the thixotropy literature, including a quite complete comparison
between the various structural kinetics models then found in the
literature. These models consist essentially of an evolution equation
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for the structure parameter and an algebraic constitutive equation
that relates the stress (or viscosity) to the structure parameter.

The constitutive equation of the structural kinetics models
usually comprises three additive terms, one for the yield stress
(usually taken as structure-parameter-dependent), one involving a
structure-parameter-dependent viscosity (the so-called structural
viscosity), and the last involving the viscosity of the completely
unstructured fluid. In most models, both the yield stress and the
structural viscosity terms are assumed, for simplicity, to depend
linearly on the structure parameter. In the more recent models, a
maximum elastic strain is included in the yield stress term, render-
ing it the capability of predicting elastic effects (e.g. [13,17]).

Recently Mewis and Wagner [15] published a valuable text
explaining in detail the fundamentals of thixotropy as it is nowa-
days understood. Among other helpful discussions, the explanation
on the difference between thixotropic and viscoelastic behavior is
particularly elucidative. In this connection, these authors point out
that one shortcoming of the viscoelastic thixotropic models avail-
able in the literature that are derived from the Maxwell model
(e.g. [3,7,11,18]) is their incapability of predicting what distin-
guishes experimentally thixotropy from viscoelasticity, namely an
instantaneous drop in shear stress when the shear rate is suddenly
decreased. Another important limitation of the presently available
Maxwell-type viscoelastic models is the absence of yield stress in
the model predictions [15].

As Mewis and Wagner [14,15] point out, despite the recent
advances in predictive methods and in the general understanding,
a unified treatment of thixotropy is still lacking. In fact, due to the
intricacy of the subject, assumptions made just for the sake of sim-
plicity, rather than based on physical arguments, abound in the
thixotropy models presently available in the literature. As a result,
the predictive capability of these models is usually rather limited.

In fact, the whole problem of thixotropy modeling seems to need
thinking out afresh. This paper is intended as a contribution, how-
ever humble, to this task. Below I describe a novel Maxwell-type
viscoelastic model that follows different paths, guided by rather
simple physical arguments. The drawbacks presented by the pre-
viously published Maxwell-type models are removed altogether.
The model is employed in different rheological test flows, and the
results demonstrate its good predictive capability.

2. The model

In this section I describe the assumptions and derive the equa-
tions that compose the proposed constitutive model for thixotropic
materials. One of the key assumptions is the existence of a
microstructure whose state can be described by a single scalar
parameter. Let � be this parameter that expresses the state of the
structure. By definition, it ranges from 0 to 1, 0 corresponding to a
completely unstructured state and 1 corresponding to a completely
structured state.

2.1. The mechanical model

I now develop a differential equation for the shear stress � with
basis on the mechanical analog shown in Fig. 1. In this figure, G(�)

Fig. 1. The mechanical analog of the material’s mechanical behavior.

is the shear modulus of the microstructure; �v(�) is the structural
viscosity, a function that describes the purely viscous response of
the material; �e is the elastic shear strain of the microstructure
when it is submitted to the shear stress �; �v is the viscous shear
strain; and � is the total shear strain. This analog corresponds to the
simplest viscoelastic constitutive model, namely, the well known
Maxwell fluid model, except that here both G and �v are assumed
to be functions of the structure parameter �. It is clear that, accord-
ing to this analog, a very large value of �v combined with a finite
value of G implies an essentially elastic behavior; conversely, a
very large value of G combined with a finite value of �v implies an
essentially viscous behavior. Alternatively, one may think in terms
of a microstructure-dependent relaxation time, �v/G, which when
large implies important elastic effects and vice-versa.

It is easy to see from the model represented in Fig. 1 that

�e + �v = � ⇒ �̇e + �̇v = �̇ (1)

where the dot on top of the variables denotes differentiation with
respect to time t.

Moreover, the following three expressions can be written for
the stress:

� = �(�̇, t)�̇ (2)

� = �v�̇v (3)

� = G(�e − �e,n) (4)

where �(�̇, t) is the viscosity function. �e and �e,n are deforma-
tions measured from an arbitrary fixed reference configuration of
the microstructure. �e is the elastic deformation corresponding to
the current configuration, and �e,n is the deformation correspond-
ing to the natural or neutral configuration, i.e. the configuration
assumed when � = 0. The neutral configuration is a characteristic
of the microstructure, and hence it is expected to change if (and only
if) the microstructure changes. Consequently, �e,n is expected to be
a sole function of the microstructure parameter �. Differentiation
of Eq. (4) with respect to time gives

�̇ = Ġ(�e − �e,n) + G(�̇e − �̇e,n) (5)

I now postulate that changes in �e,n are solely due to changes in
the microstructure, i.e. �̇e,n = 0 ⇔ Ġ = 0, while changes in �e are
solely due to changes in stress, i.e. �̇e = 0 ⇔ �̇ = 0.

Thus, Eq. (5) can be decomposed into two independent expres-
sions:

0 = Ġ(�e − �e,n) − G�̇e,n or �̇e,n = Ġ

G
(�e − �e,n) (6)

and

�̇ = G�̇e (7)

The above considerations grant the desired behavior of the model.
For example, when G increases due to a microstructure breakdown
at constant stress, the elastic strain �e does not change, but the dif-
ference (�e − �e,n) decreases at the same rate, so that the stress is
kept unchanged. Another example is the case in which the material
microstructure is initially completely destroyed due to a long expo-
sure to high shear stresses, and then at a given instant of time the
stress is set to zero so that the microstructure starts building up. In
this case, the model predicts that �e,n = �e (see Eq. (4)), �̇e = 0 (see
Eq. (7)), and thus �̇e,n = 0, despite the fact that Ġ /= 0 (see Eq. (6)).
Therefore, in this case the model predicts that the building up of
the microstructure will render the material elastic while keeping it
in its relaxed configuration �e,n, as it should.
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