J. Non-Newtonian Fluid Mech. 156 (2009) 129-138

journal homepage: www.elsevier.com/locate/jnnfm

Contents lists available at ScienceDirect

Journal of Non-Newtonian Fluid Mechanics

Journal of
Non-Newtonian
Fluid

Mechanics

Linear viscoelastic models

Part II. Recovery of the molecular weight distribution using viscosity data

Tommi Borg®*, Esko J. PidkkénenP

2 TomCoat Oy, Koskisenkuja 11, 62500 Evijdrvi, Finland

b Tampere University of Technology, Laboratory of Plastics and Elastomer Technology, P.O. Box 589, 33101 Tampere, Finland

ARTICLE INFO ABSTRACT

Article history:

Received 28 February 2008

Received in revised form 13 June 2008
Accepted 28 July 2008

Keywords:
Polydispersity
Complex viscosity
Melt calibration
Control theory
Inverse problem

The constitutive models for the viscoelasticity of polymers are presented for determining molecular
weight distributions (MWDs) from viscosity measurements. The inversion of this model derived from
control theory and melt calibration procedure connects the relaxation modulus, viscosity, and other flow
properties of a polymer. The linear principle enables simultaneous and accurate modelling of the relax-
ation modulus and of viscosity flow curves over a wide range. Starting from viscosity measurements, the
new model is used to determine the MWD, linear viscoelastic relaxation moduli, and the relaxation spec-
tra of polyethylene of different grades. In addition, two benchmark analyses of bimodal polystyrene are
reported, and the capability of the model is proven by the two-box test of Malkin. The error of the mod-
elled viscosity is smaller than that for previously reported models. One of the main features of this work
is that no relaxation time or spectrum procedures were used to generate and model linear viscoelasticity.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Bersted et al. made one of the most successful early attempts to
find a relationship between the viscosity flow curve and molecular
weight distribution (MWD), using the partition model [1-7]. The
inverse problem of how to determine the MWD from viscosity was
described by Malkin [8], and is known to be an ill-posed problem
[9-16].

In our model, once the relation between the structure and mea-
sured data is set up, other properties are computed simultaneously
on a frequency or time scale.

Our companion paper [17] presents the main concepts of the
procedure, viscoelasticity, relationships to chain structures and
dynamics, and the mathematical treatment by linear viscoelas-
tic relaxation modulus. This paper presents the computations and
results for the complex viscosity.

For a constant frequency it is misleading to use entangle and
Rousean relaxations and relaxation times, since chain dynamics
differ (as explained in Sections 2.1 and 2.2). We simply consider
(mainly) elastic rheologically effective distribution (RED’) w'(log w)
and viscous RED” w”(log w).
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2. Theory
2.1. Modelling viscosity at different steady-state flow rates

We have developed a principle for using complex viscos-
ity data obtained from a dynamic rheometer measured in the
frequency-sweep mode. As described in the companion paper
for the relaxation modulus, modern control theory as applied to
dynamic systems can be used to derive the formulas for frequency
rate w and relations to distributions by the melt calibration. In this
paper we use MWD as a function of frequency wi(w) = w;(M) from
function of molecular weight M in which w; is the weight fraction
of component i in the mixture. Now the development procedure
can be started from the principle 7 * (w) = Zw,—(M)n;‘(a)) as the
sum of independent contributions according to Graessley [18] to
get complex viscosity functional [19] for 1 * (w) = Z wi(w)nf(w).

The basic idea is to model steady impulses and the summed
stress resulting from chain dynamics between molecules of dif-
ferent molecular sizes at a steady frequency rate w. With the
normalized rheologically effective distribution (RED), w(w), and the
impulse response, h(w), we obtain system response y(w) according
to control theory as follows:

J'(w)=/ w(y)h(w — ¥)dy. (1)

o0

As the MWD function is normally a function of logarithmic vari-
ables, or here RED w(log ), we have to rewrite all variables and
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Nomenclature

Hf conversion factor between M and w scales

M(w) calibration curve for melts

Mf structural value

Mfo structural value at the reference temperature

P elasticity value

P’ viscosity value

R ratio of effective distribution ranges

w'(w), w'(log w) rheologically effective distributions, (elas-
tic) RED

w’(w), w”(log ) rheologically effective distributions, (vis-
cous) RED”

wi(w), wi(log w) characteristic effective distributions, (elas-
tic) RED

We characteristic frequency

ng characteristic complex viscosity

%RMSE percentage root-mean-square error function

between observed and fitted viscosity curves

functions in Eq. (1) on a logarithmic scale: log w — log ¥ =log(w/v),
and dy is written as d(log v). System response y(log @) = log(n
(w)[m3) is a normalized complex viscosity n* with zero viscosity
1g- We can rewrite the presented complex viscosity functional for
the normalized complex viscosity in the steady frequency rate as
follows:

log w
log (@) _ —P// w(log ¥) (log %) d log ¢, 2)

—00

0

We use entanglement relaxation modulus and Rouse relaxation
and the respective REDs to illustrate the procedure. Complex vis-
cosity n*(w) has a different physical origin and chain dynamics
at a steady frequency. At higher steady frequencies, an oriented
and disentangled chain tries to relax and re-entangle, conforming
mainly to constant stress with an elastic response according to RED’
w/(log w). At very low steady frequencies, molecular friction gen-
erates mainly constant stress with a viscous response according to
RED” w”(log w). During the constant state it is misleading to use
entangling and Rousean relaxations; instead we simply consider
(mainly) elastic RED’ w'(log w)and viscous RED” w”(log w)over the
normal data measurement range. The complete formula for n*(w)
at different frequencies can be expressed by common logarithmic
distributions as

nx*(w)
lo
g ’76

log w
= _/ (P’w’(log ¥) + P'w” (log ﬁ)) log 2 d log Y.
log /T w (3)

where scalar values P and P” are elastic and viscous constants,
respectively. This is achieved simply by copying function w/(log )
after dividing @ by the ratio, R, of the frequency-rate ranges to
obtain the distribution, w”(log(w/R)), if better information is not
available. Viscous RED” w”(log(w/R)) is outside the range of stan-
dard viscosity measurements, but at very low frequencies w also has
elastic effects. During steady-state frequency, the longest chains
are no more effective for the viscosity and we have to use the
lower bound of integration logw — log T=log(w|T) instead of the
minus infinity limit. The sampling band is still wide in the range
T=100,000/s for polydisperse polymers.

The model described by Eq. (3) includes complex viscosity *(w)
without difficulty, but solving distribution w'(w) is known to be a
severely ill-posed problem.

2.2. Conversion from the distribution w(w) to w(M
melt calibration

) (MWD) by

When an effective distribution function (RED’) w'(log w) is
found from the best fit to the viscosity, we must convert w'(log w)
to a function of molecular weight, MWD w(log M), using a conver-
sion factor between scale Hf and the polymer structural value Mf.
The background of the melt calibration is presented earlier [17];
in the present paper we present the modelling of the steady shear
conforming to a statistical orientated or stressed sphere linked to
its midpoint.

The relation between the molecular weight scale M and the fre-
quency scale w is obtained using a homogeneous linear differential
formula. The additional decrease in dM - converted by Hf on the
M scale according to — dM/dw - must equal the molecular weight
scale divided by frequency M/w:

Hfd—M-i-M 0 (4)

Solving Eq. (4) yields a simple relation for the melt calibration,
M(w), as a function of frequency, where the value of Mf is M at
w1=1/s:

M= (2 )”Hf (5)

Conversions can be performed using a standard variable trans-
formation as multivariate change-of-variable formula, Eq. (5), and
the exponent (i.e. conversion factor between scales Hf and the poly-
mer structural value Mf). MWD w(M) = dW(M)/dM, and W(M) is
the cumulative distribution of weight fractions of chains that, in the
most-used semilogarithmic scale, is w(log M) = dW(M)/d(log M).
All distributions are normalized using an integral as for the follow-
ing example for w/(log w):

+o0
/ w(log w)d log w =1 (6)

o0

The correct value of Mf for each polymer type is found by
fitting data from gel-permeation chromatography (GPC) and size-
exclusion chromatography (SEC), and dynamic measurements and
models.

The inversion w o« 1/M generated from Eq. (5) is used in evalua-
tions. High and low frequency rates correspond to small and large
molecules, respectively. The calibration curves for melt (i.e. M(w))
may also be numerical function in practice.

2.3. Effective distribution w(w) from viscosity measurements

We have to extract effective distribution w'(w) from analyt-
ical Eq. (3), but solving this directly is known to be a severely
ill-posed problem. Using a procedure similar to that described for
the relaxation modulus, we obtain characteristic n# for constant
characteristic frequency wc as

Nc *(CU)

log

log w 1/]
= —log —/ ( '(log V) + P"w” (log R)) dlog ¢

(7)
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