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a b s t r a c t

Motivated by the need for a theoretical study in a planar geometry that can easily be implemented
experimentally, we study the pressure driven Poiseuille flow of a shear banding fluid. After discussing the
“basic states” predicted by a one-dimensional calculation that assumes a flat interface between the bands,
we proceed to demonstrate such an interface to be unstable with respect to the growth of undulations
along it. We give results for the growth rate and wavevector of the most unstable mode that grows
initially, as well as for the ultimate flow patterns to which the instability leads. We discuss the relevance
of our predictions to the present state of the experimental literature concerning interfacial instabilities
of shear banded flows, in both conventional rheometers and microfluidic channels.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Complex fluids have internal mesoscopic structure that is read-
ily reorganised by an imposed shear flow. This reorganisation in
turn feeds back on the flow field, resulting in strongly nonlinear
constitutive properties. In some systems this nonlinearity is so pro-
nounced that the underlying constitutive curve relating shear stress
Txy to shear rate �̇ in homogeneous flow is predicted to have a region
of negative slope dTxy/d�̇ < 0 [1,2]. In this regime, an initially
homogeneous flow is unstable to the formation of coexisting shear
bands of differing local viscosities and internal structuring, with
band normals in the flow-gradient direction y [3]. The signature
of this transition in bulk rheometry is the presence of characteris-
tic kinks, plateaus and non-monotonicities in the composite flow
curve [4]. Explicit observation of the bands is made using local
rheological techniques such as flow birefringence [5] and nuclear
magnetic resonance [6,7], ultrasound [8,9], heterodyne dynamic
light scattering [10,9] or particle image [11] velocimetry. Using
these methods, the existence of shear banding has been firmly
established in a wide range of complex fluids, including worm-
like [4–6,12–19] and lamellar [20–25] surfactants; side-chain liquid
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crystalline polymers [26]; viral suspensions [27,28]; telechelic
polymers [29]; soft glasses [30–32]; polymer solutions [33]; and
colloidal suspensions [34].

Beyond the basic observation of shear banding, experiments
with enhanced spatial and temporal resolution have more recently
revealed the presence of complex spatio-temporal patterns and
dynamics in many shear banded flows [8,24,25,33,35–49]. In many
such cases, the bulk stress response of the system to a steady
imposed shear rate (or vice versa) is intrinsically unsteady, showing
either temporal oscillations or erratic fluctuations about the aver-
age (flow curve) value. Local rheological measurements reveal such
signals commonly to be associated with a complicated behaviour of
the interface between the bands [8,24,33,35,36,39,41–43,47–49].
The majority of these measurements have been in one spa-
tial dimension (1D), normal to the interface between the bands.
However 2D observations in Refs. [47,48] explicitly revealed the
presence of undulations along the interface, in a boundary driven
curved Couette flow, accompanied by Taylor-like vortices [49]. The
undulations were shown to be either static or dynamic, according
to the imposed flow parameters.

Theoretically, instability of an initially flat interface between
shear bands was predicted in boundary driven planar Couette flow
in Refs. [50–52]. In this work, separate 2D studies in the flow/flow-
gradient (x–y) [50,51] and flow-gradient/vorticity (y–z) [52] planes
revealed instability with respect to undulations along the interface
with wavevector in the flow and vorticity directions respectively.
In both cases the mechanism for instability was suggested to be a
jump in normal stress across the interface [53].
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While these predictions provide a good starting point, there
remains the possibility that the interfacial undulations observed
in Refs. [47–49] originate instead in curvature driven effects such
as a bulk viscoelastic instability of the Taylor Couette [54] type in
the high shear band, as discussed in Ref. [49]. These were neglected
in the planar calculations of Refs. [50–52] (Other possibilities, also
neglected, include free surface instabilities at the open rheome-
ter edges; and an erratic stick-slip motion at the solid walls of the
flow cell. We shall not consider these further in what follows here
either.)

In principle, therefore, either (or both) of (at least) two possible
mechanisms could underlie the observed interfacial undulations:
(i) a bulk viscoelastic Taylor Couette like instability of the strongly
sheared band, or (ii) instability of the interface between the bands,
driven by the normal stress jump across it. Of these, scenario (i) can
only arise in a curved geometry. A possible experimental route to
discriminating between these two scenarios is to perform rheology
on the pure high shear branch, thereby eliminating the interface
required for (ii). This is technically difficult, although the results of
Ref. [55] suggest stability of the high shear phase alone. Another
possible way to compare (i) and (ii) is to perform experimental
studies in a planar flow geometry, thereby eliminating the cur-
vature required for (i). However they are technically difficult to
implement in a boundary driven setup.

There thus exists a clear need for theoretical predictions in a
planar flow geometry that could easily be implemented experi-
mentally. An obvious candidate comprises pressure driven flow
in a rectilinear microchannel of rectangular cross-section with a
high aspect ratio Lz/Ly � 1. Indeed, such experiments have recently
been performed [56–58], as discussed in more detail below. With
this motivation in mind, in this paper we study the planar Poiseuille
flow of a shear banding fluid driven along the main flow direction x
by a constant pressure drop ∂xP = −G. For simplicity we assume the
fluid to be sandwiched between stationary infinite parallel plates
at y = {0, Ly}, neglecting the lateral walls in the z direction, and so
taking the limit Lz/Ly → ∞ at the outset. Our main contribution
will be to show an interface between shear bands to be unstable in
this pressure driven geometry, as it is in the boundary driven pla-
nar Couette flow studied previously [50–52]. We will furthermore
give results for the growth rate and wavevector associated with the
early stage kinetics of this instability, as well as the ultimate flow
patterns to which it leads.

The paper is structured as follows. After introducing the
rheological model and boundary conditions in Section 2, we cal-
culate in Section 3 the one-dimensional (1D) shear banded states
that are predicted when spatial variations are permitted only in
the flow-gradient direction y, artificially assuming translational
invariance in x and z, and accordingly assuming a flat interface
between the bands. These form the “basic states” and initial con-
ditions to be used in the stability calculations of the rest of the
paper.

In Section 4 we study the linear stability of these 1D basic states
with respect to small amplitude perturbations with wavevector
qxx̂ in the flow direction. As in the case of boundary driven flow
studied previously, we find an undulatory instability of the inter-
face between the bands [50–52]. Results are then presented for
the ultimate nonlinear dynamical attractor in this x–y plane, from
simulations that adopt periodic boundaries in x. This exhibits inter-
facial undulations of finite amplitude that convect along the flow
direction at a constant speed. In Section 5 we turn instead to the
flow-gradient/vorticity plane y–z, likewise demonstrating linear
instability of the interface with respect to small amplitude pertur-
bations with wavevector qz ẑ. We also give results for the ultimate
nonlinear flow state, which in this plane is steady. Directions for
future work, which will include full 3D calculations, are discussed
in Section 6.

2. Model and geometry

The generalised Navier–Stokes equation for a viscoelastic mate-
rial in a Newtonian solvent of viscosity � and density � is

�(∂t + v · ∇)v = ∇ · (T − PI) = ∇ · (� + 2�D − PI), (1)

where v(r, t) is the velocity field and D is the symmetric part of
the velocity gradient tensor, (∇v)˛ˇ ≡ ∂˛vˇ. Throughout we will
assume zero Reynolds’ number � = 0; and fluid incompressibility,

∇ · v = 0. (2)

The quantity �(r, t) in Eq. (1) is the extra stress contributed to the
total stress T(r, t) by the viscoelastic component. We assume this
to obey the diffusive Johnson–Segalman (DJS) model [59,60]

(∂t + v · ∇) � = a(D · � + � · D) + (� · � + � · �) + 2G0D

− �

�
+ �2

�
∇2�. (3)

Here a is a slip parameter describing non-affinity of molecular
deformation, i.e., the fractional stretch of the polymeric material
with respect to that of the flow field. For |a| < 1 (slip) the intrin-
sic constitutive curve is capable of the non-monotonicity of Fig. 1,
thereby admitting a shear banding instability. G0 is a plateau modu-
lus, � is the viscoelastic relaxation time, and � is the antisymmetric
part of the velocity gradient tensor. The diffusive term ∇2� is
needed to correctly capture the structure of the interface between
the shear bands, with a slightly diffusive interfacial thickness O(l),
and to ensure unique selection of the shear stress at which banding
occurs [61].

Within this model we study flow between infinite flat parallel
plates at y = {0, Ly}. The fluid is driven in the positive x direction by a
constant pressure gradient ∂xp = −G, the plates being held station-
ary. Accordingly, we write Eq. (1) (at the zero Reynolds number of
interest here) in the form

0 = ∇ · (� + 2�D − P̃I) + G x̂, (4)

in which we have separated the main driving pressure gradient
from the rest of the pressure field, P̃. Fluid incompressibility is
enforcing by casting the fluid velocity in terms of streamfunc-
tions; and P̃ is eliminated by taking the curl of Eq. (4). (The qx =
0, qz = 0 part of Eq. (4), containing G but not P̃, is dealt with

Fig. 1. Left: Dotted line: homogeneous constitutive curve for a = 0.3, � = 0.05. Thick
solid line: composite flow curve for one-dimensional planar shear banded Cou-
ette flow (data already published in Ref. [50]). Selected stress Tsel = 0.506. Thin
solid line: parametric plot of local shear stress Txy(y) = �xy(y) + ��̇(y) = G((1/2) − y)
against local shear rate �̇(y) for one-dimensional planar shear banded Poiseuille flow
with l = 0.00125, G = 2.0. Right: Halved pressure gradient versus total throughput
for one-dimensional planar Poiseuille flow with a = 0.3, � = 0.05, l = 0.0025. This
shows a kink at the onset of banding at G/2 = Tsel as expected.
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