
J. Non-Newtonian Fluid Mech. 158 (2009) 113–126

Contents lists available at ScienceDirect

Journal of Non-Newtonian Fluid Mechanics

journa l homepage: www.e lsev ier .com/ locate / jnnfm

Prolegomena to variational inequalities and numerical schemes
for compressible viscoplastic fluids�

R.R. Huilgol ∗, Z. You
School of Computer Science, Engineering and Mathematics, Flinders University of South Australia, GPO Box 2100, Adelaide, SA 5001, Australia

a r t i c l e i n f o

Article history:
Received 1 April 2008
Received in revised form 4 July 2008
Accepted 9 July 2008

Keywords:
Variational inequality
Compressible viscoplastic fluid
Operator-splitting method
Cavity flow

a b s t r a c t

Firstly, a summary of the development of the constitutive equation for an incompressible Bingham fluid,
the variational inequality and an operator-splitting numerical method for the solution of isothermal flow
problems is presented. Next, a variational inequality is derived for compressible viscoplastic fluids in
which the viscosity and yield stress depend on the pressure, temperature and the three invariants of the
first Rivlin–Ericksen tensor, and inertial effects are present. Based on a known version for compressible
Newtonian fluids, an extension of the operator-splitting scheme to the flows of compressible viscoplastic
fluids, when inertia and thermal effects are manifest, is proposed. Finally, this scheme is employed to
examine the isothermal flow of a Bingham material in a square cavity when the fluid is slightly compress-
ible, with its density depending linearly or exponentially on the pressure. The results are compared with
those for an incompressible fluid for small Bingham numbers.

© 2008 Published by Elsevier B.V.

1. Introduction

More than 30 years ago, Duvaut and Lions [1] demonstrated that
variational inequalities (VIs) arise naturally in the solution of steady
and unsteady flow problems in incompressible Bingham fluids. As
is well known, the flow domain of a Bingham fluid consists of parts
where the fluid has yielded and where it is at rest, or moves as a
rigid body. Clearly, any method used to solve a flow problem has to
identify these zones. The discovery that Bingham fluid flows obey
VIs was extremely important because during the solution of a VI,
the yielded and unyielded zones in a given flow problem mani-
fest themselves without any a priori assumptions regarding their
locations or size. Subsequently using the relevant VI, Glowinski [2]
showed that the flow of a Bingham fluid in a pipe of arbitrary cross-
section comes to a halt in a finite amount of time, if the applied
pressure gradient drops below a geometrically defined multiple
of the yield stress; in fact, a finite upper bound to this extinction
time was found in Ref. [2]. This fundamental difference between
a viscous fluid, such as a Newtonian fluid, and a Bingham fluid
was indeed surprising and has been shown to exist between the
Newtonian and other viscoplastic fluids as well; see [3].

� Sections 1–7 were presented as part of the plenary lecture by R.R.H. at the Monte
Verità meeting. Section 8, consisting of the application of the operator-splitting
method to flows in a cavity by Z.Y., is added here.
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In their book, Duvaut and Lions [1] proved further that the VI
was equivalent to the existence of a symmetric second order tensor
field throughout the flow domain. This tensor, called a multiplier, is
such that its ‘magnitude’ is less than one where the Bingham fluid
exhibits rigidity and equal to one where it has yielded. Moreover,
the inner product of this tensor with the first Rivlin–Ericksen ten-
sor [4], associated to the velocity field which satisfies the equations
of motion, leaves the magnitude of the latter unaffected. This was
exploited by Cea and Glowinski [5] brilliantly to develop numer-
ical methods based on an Uzawa type algorithm to model the
steady flows of Bingham fluids in pipes of arbitrary cross-section.
More recently, the multiplier has been used in connection with
operator-splitting methods to model other flows of Bingham flu-
ids numerically [6–9]. Our aim is to suggest an operator-splitting
method for the flows of compressible yield stress fluids based on
the work of Li and Glowinski [9,10].

In order to fulfil this task, a review of the operator-splitting
method for incompressible Bingham fluids has to be provided first.
In turn, this means that one has to look carefully at the procedure
for deriving the constitutive equation for a Bingham fluid, which
has to be prefaced by an examination of incompressibility in fluid
mechanics in general, and the response of the Bingham fluid to the
additional constraint of yielded-unyielded regions arising from the
bounds on the ‘magnitude’ of the extra stress tensor. These matters
are explored in Sections 2 and 3 and the multiplier is introduced
into the constitutive equation through the VI, accompanied by a
caveat.

In order to solve the VI for complicated flows, numerical meth-
ods have to be discovered. One of them is the operator-splitting
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method for Bingham fluids due to Sánchez [6]. A similar scheme
has also been proposed by Dean et al. [7]. In essence, this method
divides the task of finding the velocity, the multiplier tensor and
pressure fields into three sub-problems and iteration proceeds till
convergence occurs. These matters are discussed in Section 4, and
applied in Section 8 to the flow in a square cavity confirming the
earlier results [8,9].

To develop such a scheme for compressible viscoplastic fluids,
the VI for such a fluid is derived ab initio in Section 5 and the conti-
nuity and energy equations are listed in Section 6. Finally in Section
7, we look briefly at the isentropic flows of compressible viscous flu-
ids [11,12] and find that the perturbation method [9] is difficult to
apply to compressible viscoplastic fluids. This is because the per-
turbation of the velocity field may change the location and shape
of the yielded-unyielded regions. Thus, iteration beyond the basic
flow is not viable numerically.

Turning to the main goal of Section 7, we summarise the
operator-splitting method of Li and Glowinski [9,10] for low Mach
number flows of compressible viscous fluids when thermal and
inertial effects are present. Subsequently, this method is extended
to compressible viscoplastic fluids in the same spirit as that for
incompressible fluids mentioned in Section 4. As an application,
the flow of a slightly compressible Bingham fluid in a square cav-
ity is examined in Section 8, when the density depends linearly or
exponentially on the pressure. The results are compared with those
for an incompressible Bingham fluid for small Bingham numbers.

2. Incompressible fluids

We begin by writing the constitutive equation of an incompress-
ible viscoplastic fluid as

S = −p1 + �, (1)

where p is the pressure and � is the extra stress tensor. In this work,
we shall use the first1 Rivlin–Ericksen tensor [4]. A, rather than the
rate of deformation tensor D.

The first Rivlin–Ericksen tensor A is derived from a velocity field
v as follows:

A(v) = ∇v + ∇vT = 2D. (2)

One of the invariants which we shall use is the trace of A, i.e.,
trA = I1(A) = 1 : A.

Secondly, we shall call upon another invariant K ≥ 0, which is
defined below:

2K2(v) = A(v) : A(v). (3)

The reason is that in a simple shearing flow given by v = �̇yi,
where the shear rate �̇ > 0 is a constant, we get

2K2(v) = 2�̇2, (4)

so that K(v) = �̇ , the magnitude of the shear rate. We shall also use
the invariant 2K2(�) = � : � of the extra stress tensor.

The first task is to describe the VI for an incompressible vis-
coplastic fluid and study some of its consequences. However, before
we get to this inequality, we have to answer the following questions:

(1) What is meant by the pressure p in an incompressible fluid?
(2) Can the material properties such as the viscosity �, and the yield

stress �y, depend on p?

1 The usual notation for the first Rivlin–Ericksen tensor [4] is A1. Since we do
not need the higher order Rivlin–Ericksen tensors, we shall denote the first tensor
without the subscript, i.e., as A.

(3) How can we apply these ideas to incompressible viscoplastic
fluids?

First of all, we know that the constitutive equation in an incom-
pressible fluid does not define the pressure term p. The latter is said
to arise in an incompressible material as a response to the constraint
imposed on the material, which is 1 : A = 0 in all motions. Is there
a way of defining p so that it is unique? Note that in viscoelastic
fluids, this point is ignored because the material properties such
as viscosity, the normal stress differences, the dynamic moduli and
the extensional viscosity are the same whether we define p through
p = −(1/3)1 : S or not.

In viscoplastic fluids, we do not have this luxury because the
existence of a rigid flow domain depends on the invariant K(�) of
the extra stress tensor. So, the decomposition of the total stress S
into −p1 and � is critical.

Recently, Rajagopal and Srinivasa [13] have investigated the
response in a continuous medium subject to a single scalar con-
straint. Suppose that the constraint is defined through an equation
of the form �(A) = 0. If this represents a ‘surface’, one can suppose
that it has a normal N, which is a symmetric second order tensor
defined through

N = ∂�

∂A
. (5)

Thus, the total stress tensor S is decomposed as:

S = �N + �, N : � = 0, (6)

so that

� = S : N
N : N

. (7)

In defining � in this manner, one is not invoking any argument
to the effect that the ‘constraint forces’ do no virtual work in a
constrained motion.

Now, the decomposition of S into �N and � does not preclude
the latter from depending on �. In fact, if one looks at Coulomb
friction problems in rigid body mechanics where sliding motion is
present, the friction force opposing the motion is proportional to
the constraint force provided by the surface on which the motion
occurs.

Turning to incompressible fluids, one can show quite easily that
N = 1, the identity tensor. Then, we have the unique decomposition

S = −p1 + �, 1 : � = 0. (8)

Thus, p = −(1/3)1 : S is uniquely defined, and � can depend on
p as well. It follows from this result that in the yielded zone in a
viscoplastic fluid, one has a unique definition of p, because in such
a fluid � = f (K(v))A(v).

More than this is required. In the rigid zone, p cannot be defined
by the above procedure because the constraint now is A = 0, which
is more restrictive than 1 : A = 0. In addition, we must ensure that
the definition of pressure in the rigid zone leads to an entity which
is continuous with that in the yielded region. So, we define p =
−(1/3)1 : S throughout the flow domain ˝. Then, the constraints on
the second invariant of � in the rigid and yielded zones are uniquely
defined. If p = −(1/3)1 : S, the pressure term is well defined even if
a fluid particle moves into a sheared region and out of it as discussed
by Frigaard and Ryan [14].

Another difficulty with the constitutive equation of a viscoplas-
tic fluid is that the demarcation of the rigid zone from the yielded
zone is really a constraint, and it would seem that a separate restric-
tion on the constitutive relation must arise. We shall examine this
aspect next.
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