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h i g h l i g h t s

� Characterizing structural working behavior by structural stressing state theory.
� Updating structural failure load of a bridge using the Mann-Kendall criterion.
� Revealing structural progressive failure characteristics.
� Proposing and modelling stressing state submodes.
� Demonstrating structural coordinative working performance.
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a b s t r a c t

This paper conducts the experimental investigation into the whole working process of a large-curvature
continuous steel box-girder bridge model to reveal its behavior characteristics and unseen failure mech-
anism, based on the structural stressing state theory. Firstly, the structural stressing state and corre-
sponding characteristic parameters are expressed by the generalized strain energy density (GSED)
derived from the experimental strain data. Then, the Mann-Kendall (M-K) criterion is introduced to dis-
tinguish the structural stressing state leaps of the bridge model, leading to the updated definition of the
structural failure load and the revelation of structural progressive failure. Furthermore, this paper pro-
poses stressing state submodes and evaluates their roles in the structural ‘‘failure”. Finally, the coordina-
tive working performance of the divided sub parts is modeled through the ratios between the GSED sums
of individual sub parts and the ensemble.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Curved continuous girder bridges have been widely adopted for
their economic and functional advantages as well as rational work-
ing performance. Though the early analysis on the ultimate bearing
capacity of curved girders can be traced to the 1960s [1–5], analyt-
ical methods still fell behind engineering applications. Conse-
quently, some functional accidents, such as too much lateral
displacement of main girders or too much torsional deformation,
took place for some times resulting from the absence of some nec-
essary researches for design reference [6], which urges researchers
to deeply study the structural working behavior. Currently, there
are two important issues which have drawn researchers’ much
attention:

� In terms of the mechanic complication, curved girders under
vertical loads are subjected to not only bending but also tor-
sional deformation, with the co-existence of shear stress, warp-
ing stress and bending normal stress on cross sections. Usually,
the level and distribution of stresses relate to a variety of fac-
tors, such as geometric shapes, bending and torsional rigidity
of cross sections, support conditions and loading cases [7].
And when going into the elastic-plastic stage where sectional
bending and torsional stresses no longer maintain the previous
proportion, the curved girder embodies a fairly complicated
structural stressing state [8]. In addition, past research results
showed that the effect of curvature on the stressing state of a
curved girder is also significant [9]. Especially for large-
curvature girders, the second-order effect will significantly
decrease the ultimate load level [10]; also, the reduction degree
of structural torsional rigidity owing to the development of
plasticity and its contribution to the lateral flexural-torsional
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buckling are quite difficult to describe in quantity. Hence, it is
hard to find the analytical solutions to relative governing equa-
tions [11].

� Structural failure mechanism has always been vital but also
complicated since the high-nonlinearity and great variation in
the structural working behavior. Present studies did not evi-
dently imply when a structure starts to lose its normal and
stable working state or to enter its ‘‘failure” state, and focused
on the ultimate collapse state mostly [1,4,12–15]. Besides, the
existing ultimate limit state for structural design is commonly
semi-theoretical and semi-empirical judgment. As a result, it
is expected in structural analysis and engineering practice that
a rational definition of structural ‘‘failure” and corresponding
distinguishing methods will come into being.

In order to address these two issues, the authors deeply inves-
tigate the characteristics of structural stressing states embodied in
the experimental data of the 1/10 scaled bridge model [16,17],
based on the theory of structural stressing state. The investigation
models the structural stressing state by using the generalized
strain energy density (GSED) sum [18]. Then, with an innovative
application of the Mann-Kendall (M-K) method to the GSED sum-
load curve, the structural stressing state leap is distinguished. This
leap is rightly verified to be the termination of the previous stable
stressing state of the bridge, leading to an updated definition of
structural failure and promoting a general criterion for distinguish-
ing the structural ‘‘failure” load. Moreover, we reveal two struc-
tural stressing state characteristics: (1) Stressing state submodes
and their roles in structural working process; (2) Structural pro-
gressive failure behavior. Finally, the concept of coordinative work-
ing performance of individual sub parts is introduced and
structural failure mechanism is revealed further.

2. Structural stressing state and M-K criterion

2.1. Concept of structural stressing state and GSED curve

The stressing state of a structure is defined as the structural
working behavior characterized by the distribution patterns of
GSED values, displacements, strains and stresses of key points.
Generally, the strain energy density E0 of the ith point can be cal-
culated by

E0;i ¼
Z
r1de1 þ r2de2 þ r3de3 ð1Þ

where r1, r2, r3 and e1, e2, e3 are three principal stresses and
strains, respectively; E0;iis the ith strain energy density. Referring
to the concept of strain energy density, this paper chooses the gen-
eralized (or quasi) strain energy density (GSED) as the characteristic
parameter to express the stressing state at a point [18]. Thus, Eq. (1)
is simplified as

Ei ¼ 1
2

X3
j¼1

Ee2j ð2Þ

where Ei = GSED value of the ith point; ej = the jth principal strain;
and E = elastic modulus. The GSED sum of a group of key points can
be calculated by

E0
j ¼

X
i

Ei ð3Þ

where E0
j ¼ GSED sum of the jth group to express the stressing state

of a sub part. Furthermore, the GSED sum E0 ¼ P
E0
j of all groups

(sub parts) is adopted to characterize the structural stressing state
at each load step F. It can be seen in the Section 4.1 that the

E0 � F curve can vividly exhibit differential structural stressing
states and corresponding characteristics.

2.2. M-K criterion

In order to distinguish the stressing state leap of the structure
through the E0 � F curve, the Mann-Kendall (M-K) method is
applied, for it is a widely used trend analysis tool currently with-
out necessity for samples to comply with certain distributions or
interference of a few outliners [19–21]. Here, it is assumed that
the sequence of fE0ðiÞg (the load step i = 1, 2, . . ., n) is statistically
independent. Actually, the relevant and independent ingredients
coexist in the structural stressing state at different load steps to
a certain extent. According to the Saint Venant’s principle, struc-
tural components which are located far away from each other
have little spatial relevance or mutual effects, leading to consider-
able ingredients of independence in the experimental data
(strains, displacements, etc.) at different locations. Besides, the
inherent randomness in the experimental model and material
properties result in a significant independent content at different
load steps as well. The authors have tried the same M-K proce-
dure to a significant amount of simulated data, but the results
are not as satisfying as the corresponding experimental data,
which is an auxiliary evidence for the independent contents of
the experimental data at different load steps. Also, from the effec-
tiveness of the M-K criterion, which will be discussed later, this
analytical method could also be valid in view of the ‘‘result-
oriented” consideration. Hence, the mutation of the structural
working behavior can be detected approximately through the
M-K criterion. Then, a new stochastic variable dk at the kth load
step can be defined by

dk ¼
Xk

i¼1

mið2 6 k 6 nÞ;mi ¼ þ1; E0ðiÞ > E0ðjÞð1 6 j 6 iÞ
0 otherwise

�
ð4Þ

where mi is the cumulative number of the samples; ‘‘+1” means
adding one more to the existing value if the inequality on the right
side is satisfied for the jth comparison. The mean value EðdkÞ and
variance VarðdkÞ of dk are calculated by

EðdkÞ ¼ kðk� 1Þ=4 ð2 6 k 6 nÞ;
VarðdkÞ ¼ kðk� 1Þð2kþ 5Þ=72 ð2 6 k 6 nÞ ð5Þ

Under the assumption that the fE0ðiÞg sequence is statistically
independent, a new statistic UFk is defined by

UFk ¼
0 k ¼ 1
ðdk � EðdkÞÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðdkÞ

p
2 6 k 6 n

�
ð6Þ

Thus, all the UFk data can form a UFk � F curve. A similar proce-
dure is proceeded to the inverse fE0ðiÞg sequence, namely, the
fE0

2ðiÞg sequence where

E0ðiÞ ¼ E0
2ðn� iþ 1Þ ð7Þ

and n is the sample capacity. Similarly, the stochastic variable d2k at
the kth load step is defined as

d2k ¼
Xk

i¼1

mið2 6 k 6 nÞ; mi ¼
þ1;
0

�
E0
2ðiÞ > E0

2ðjÞ ð1 6 j 6 iÞ
otherwise

ð8Þ

where mi is the cumulative number of the samples; ‘‘+1” means
adding one more to the existing value if the inequality on the right
side is satisfied for the jth comparison. The mean value Eðd2kÞ and
the variance Varðd2kÞ of d2k are calculated by

Eðd2kÞ ¼ kðk� 1Þ=4 ð2 6 k 6 nÞ;
Varðd2kÞ ¼ kðk� 1Þð2kþ 5Þ=72 ð2 6 k 6 nÞ ð9Þ
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