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ABSTRACT

The rheological phase diagrams for solutions of rigid rod molecules are computed for planar Couette and
Poiseuille flow as a function of Deborah number, initial orientation, and wall separation; this analysis
extends the seminal work of Larson and Ottinger [R.G. Larson, H.C. Ottinger, Effect of molecular elasticity
on out-of-plane orientations in shearing flows of liquid-crystalline polymers, Macromolecules 24 (1991)
6270-6282] to nonhomogeneous flows. The Doi diffusion equation is solved by using a finite-element
discretization of the rod distribution function and Onsager interaction potential. Simulations of planar
Couette flow show the familiar logrolling-tumbling-wagging-flow-aligning cascade as Deborah num-
ber increases, and the critical Deborah numbers associated with transitions between states vary with
wall separation. Defects are caused solely by wall interactions rather than artificial anchoring conditions.
Simulations of planar Poiseuille flow show that the system tends toward either logrolling states or com-
posite flow-aligning/logrolling attractors depending on the Deborah number, wall separation, and initial

orientation.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Rodlike liquid crystalline polymers (LCPs) have been the sub-
ject of many experimental and theoretical studies in recent decades
because of their physically interesting phase behavior and rheology
and also because of the industrially useful properties of LCP-based
products. One of the most complex and challenging aspects of LCP
research is the coupled evolution of structure and stress during
flow, and a variety of theoretical models have been developed with
this problem in mind. These models include continuum expres-
sions such as the Leslie Ericksen (LE) theory [2-6], micromechanical
kinetic theories such as the Doi diffusion equation [7,8], and tensor-
based phenomenological expressions for structure evolution with
empirical parameters.

In the LE theory, the system is locally described by a nematic
director, which gives the average rod orientation at a given point in
space; stresses in the fluid are related to Frank elasticity, as mea-
sured by gradients in the director. A number of studies have used
the LE theory to model structure coarsening, banded textures, and
roll cells [10]. However, the LE theory is only valid in the limit of
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weak shear flow, and the director-based formalism prevents the
theory from describing the fine-scale gradients in density or struc-
ture that are prevalent in polydomain LCP systems. Additionally, the
LE theory requires the use of a number of empirical parameters.

The original Doi diffusion equation [7] for the rod orientation
distribution function f is based on a kinetic theory description
of spatially homogeneous flows of rods interacting through the
Onsager excluded-volume potential. This homogeneous formula-
tion has been used to compute the rheological behavior of rigid rod
solutions in simple flows. Semenov [11] and later Doi and Kuzuu
[12] predicted that rods in homogeneous shear flow would undergo
continuous tumbling; Doi and Kuzuu also showed that the cessation
of tumbling is associated with the unusual negative first normal
stress differences frequently observed in experimental LCP systems.
Marrucci and Maffettone simulated the Doi diffusion equation in
planar shear flow in a two-dimensional geometry (constrained to
a single dimension in orientation space), and they demonstrated
that tumbling is suppressed at high shear rates and gives rise to
wagging and flow-aligning states [13,14]. Larson and Ottinger [1,15]
generalized these results by expanding the Doi diffusion equation
in spherical harmonic functions and by computing a sequence of
states - logrolling, kayaking, tumbling, wagging, flow-aligning -
that occur sequentially as a function of shear rate and initial direc-
tor orientation relative to the shear plane. They mapped these states
onto rheological phase diagrams for given values of the dimension-
less rod concentration.
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The most natural extension of Larson and Ottinger’s results is the
characterization of nonhomogeneous states, where orientation and
rod density vary in space either because of wall-rod interactions
or because of spatially varying shear rate. However, until recently,
the nonhomogeneous formulation of the Doi diffusion equation
[16] was used only in its linearized form for linear stability anal-
ysis of spinodal decomposition [17-19], because the equation is
numerically unwieldy. The nonhomogeneous theory presents two
major numerical challenges. First, the evolution of f in both physi-
cal and orientation space is difficult, because of the large number of
unknowns; second, the computation of gradients in the exact “long
range” contribution to the excluded-volume potential is numeri-
cally intensive. (Note that the term “long range contributions” is
something of a misnomer. These terms capture the same physical
forces as those in the local potential and describe the influence of
gradients in structure.)

A number of studies have attempted to circumvent both of these
challenges by neglecting translational diffusion and by averaging
the diffusion equation over orientation space to give an evolu-
tion equation for the structure tensor S. This latter simplification
requires the use of closure approximations and the replacement
of the exact Onsager potential with tensor-based approximations
such as the Maier-Saupe [20] or the Marrucci-Greco potentials
[21-23]. The Maier-Saupe potential can be classified as a purely
“local” nematic potential, whereas the Marrucci-Greco potential
contains phenomenological elastic terms similar to the first “non-
local” contribution to the Taylor series expansion of the original
Onsager potential. These tensor-based simplifications of the Doi
theory [24-27] are mathematically similar to the broad class of
phenomenological, tensor-based theories of LC dynamics [28-30],
because both types of theories incorporate the same physical
forces in the texture evolution equations. Both sets of theories
also suffer the same drawbacks: (1) they require the assump-
tion of constant-density, even in defects and interfaces; (2) they
require closure approximations, which can be extremely impre-
cise; (3) they require artificial anchoring boundary conditions and
(4) they lack the ability to resolve interfaces and defects on the
length scale of an individual rod. This is the case because the
approximate potentials are constructed as Taylor expansions of
the original Onsager excluded-volume potential and lose accuracy
in the presence of sharp gradients in the distribution function.
Although tensor-based models have been used extensively in
the study of nonhomogeneous LCP flows, they cannot accurately
capture the true behavior of rigid rods in defect-laden systems
because of the simplifying assumptions inherent in the mod-
els.

Due to advances in computational power and numerical
methods, several recent studies have attempted to solve the non-
homogeneous Doi diffusion in simple geometries. Zhou et al.
[31,32] used a numerical scheme that coupled a finite difference
discretization in physical space with spherical harmonics in orien-
tation space in order to simulate the Doi diffusion equation with
Marrucci-Greco elasticity in planar Couette flow. Yu and Zhang
[33] followed this work by simulating the full nonhomogeneous
Doi diffusion equation with the Onsager potential; their simula-
tions invoked the simplifying constraint that rod orientations be
restricted to the plane of shear with no logrolling or kayaking states
allowed. This constraint is similar to the planar constraint invoked
by Marrucci and Maffettone and effectively reduces orientation
space to a single dimension 6. Other simplifications included fur-
ther approximations to the Onsager intermolecular potential and
the use of nematic anchoring conditions at the walls. They also
simulated a very weak coupling between flow and texture evolu-
tion by assuming that the rod concentration was so dilute that any
deviations from Newtonian flow were small.

Their results for simple wall-driven shear flow show an exten-
sion of the tumbling-wagging-flow-aligning cascade seen in the
homogeneous system. These states include: (a) the in-plane elastic-
driven steady-state (IE) at low shear rates where no time-periodic
behavior is present, (b) the tumbling state (IT) where tumbling
occurs in the bulk of the system bounded by flow-aligned boundary
layers with time-periodic defects separating the boundary layers
from the bulk, (c) the in-plane wagging state (IW) where wagging
occurs in the bulk of the system with two flow-aligned bound-
ary layers at the walls, and (d) the viscous-driven steady-state (IV,
flow-aligning). They also predicted three new flow modes: (e) the
tumbling-wagging composite region (TW) which acts as a transition
between the IT and IW mode, (f) the tumbling state with inside defects
(ITD) where inner defects arise in the midst of tumbling at high
values of the wall separation b, and (g) the tumbling-wagging com-
posite region with inside defects (TWD) where inner defects appear
in the midst of the TW mode at high values of b. (Note that Tsuji and
Rey also report four twisting out-of-plane states in their qualitative
rheological phase diagram based on a phenomenological tensor-
based theory, but the complex structures found in these states are
chiefly caused by the wall anchoring conditions [29].) Yu and Zhang
present a rheological phase diagram (their Fig. 3) for planar Cou-
ette flow that shows the regions of stability for the various states as
a function of wall separation and Deborah number. However, this
phase diagram is only qualitative and has no numerical delineation
of the boundaries between the various states.

Also, quasi-periodic flows with complex defect patterns were
predicted by Yu and Zhang for pressure-driven flows when the
effects of viscosity and molecular interactions were comparable.
No phase diagram for pressure-driven flow was given.

Ina previous letter, we described a finite-element-based numer-
ical method for evolving the nonhomogeneous Doi diffusion
equation in a single spatial dimension and full orientation space
[34]. The method was applied to planar Couette flow and planar
Poiseuille flow with strong coupling between the flow and texture
evolution. These simulation results showed that nematic anchoring
conditions at walls can suppress the out-of-plane instabilities that
arise during tumbling at low shear rates. We also characterized the
periodic defects that occur in tumbling as low-density, low-order
parameter regions of finite size; this stands in contrast to pre-
vious descriptions of defects as singularities or constant-density,
abnormal nematic states [28]. We also demonstrated the existence
of a composite flow-aligning/logrolling state caused by the spa-
tially varying shear rate in pressure-driven flow, with flow-aligning
regions near the wall (where the shear rate is high) and a logrolling
region in the channel center (where the shear rate is low). These
results sharply differed from those of Yu and Zhang because of the
unrestricted orientation space, the lack of nematic anchoring con-
ditions, and the high polymeric viscosity and subsequent coupling
between flow and texture.

In the present work, we generalize the numerical results of the
previous paper and show quantitative rheological phase diagrams
for concentrated LCP solutions in both planar Couette flow and pla-
nar Poiseuille flow with no nematic anchoring at channel walls.
These diagrams represent the first quantitative extension of Larson
and Ottinger’s phase diagrams for homogeneous flows to phase
diagrams for nonhomogeneous flows with the full Doi diffusion
equation and Onsager potential.

2. Formulation

A solution of rigid rodlike molecules of diameter d and length
L is described by the distribution function f(r, u, t), which gives
the probability that a rod will have a center-of-mass location r and
orientation u at time t. Integrating f over all orientations u gives
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