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a b s t r a c t

We consider stagnation point flow away from a wall for creeping flow of dilute polymer solutions. For a
simplified flow geometry, we explicitly show that a narrow region of strong polymer extension (a birefrin-
gent strand) forms downstream of the stagnation point in the UCM model and extensions, like the FENE-P
model. These strands are associated with the existence of an essential singularity in the stresses, which is
induced by the fact that the stagnation point makes the convective term in the constitutive equation into
a singular point. We argue that the mechanism is quite general, so that all flows that have a separatrix
going away from the stagnation point exhibit some singular behaviour. These findings are the counterpart
for wall stagnation points of the recently discovered singular behaviour in purely elongational flows: the
underlying mechanism is the same while the different nature of the singular stress behaviour reflects the
different form of the velocity expansion close to the stagnation point.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Extensional flows of polymer solutions and melts occur in many
industrial polymer processing operations, and hence such flows
have been studied for decades [1,2]. Recently however, interest
in extensional flows was renewed by observations of steady and
unstable continuous flow in microfluidic devices [3–5], and it was
realized only recently that extensional flows are prone to the forma-
tion of singularities and non-analytic structures in the stress fields
[6–8]. Depending on the Deborah number and the model used,
these stress singularities may take various forms. For purely exten-
sional flow in continuum models that describe infinitely extensible
polymer chains (such as the upper convected Maxwell model
(UCM) and the Oldroyd-B model [1,2,9]) the stresses can have power
law spatial behaviour with a finite limit at the centre line, or they
even have power law divergencies. For models that are based on
finitely extensible chains, divergencies are cut off at some scale, but
singular behaviour of the stress gradients may persist [6–8]. Such
singular behaviour may have important implications for numerical
simulations of extensional flows, since it leads to structures with
a very small length scale. Indeed it is known that for many such
flows, numerical schemes break down at only moderate flow rates
(Deborah numbers of order unity).
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The question quite naturally comes up whether singular
behaviour near special points is the rule rather than the exception.
We argue in this Communication that the latter is the case and
demonstrate this for a simplified case where all calculations can be
done analytically, so that the emergence of the singular behaviour
can be followed explicitly.

The reason to expect singular behaviour near special points
where the velocity vanishes – even though the geometry is not
singular1 – is actually very simple. For steady flow, the only deriva-
tive terms of the stress T in UCM-type constitutive equations come
from the convective term (v · ∇)T. The points where v vanishes –
the stagnation point in elongational flow or in the wall stagnation
point flow considered here – thus translate into a singular point [10]
of the partial differential equation obtained from the constitutive
equation for the stress. Close to the singular point, the lowest order
terms in the expansion of v are often fixed by simple symmetry con-
siderations and boundary conditions, if applicable. So the nature of
the dominant singularity at the singular point is generally fixed
independent of the precise details of the model. Further away from
the singularity, the behaviour will typically depend on the details of
the flow profile. All these features are well illustrated by the analysis
below. As stated, we focus on a simple case where the calculations
can all be done analytically, but the scenario holds generally for

1 Of course, at sharp corners where the flow field itself is singular, this singular
behaviour carries over to the stresses.
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Fig. 1. Stagnation flow (a) in a wake, (b) approximated by a flow near a flat wall. In (b) the formation of a birefringent strand is qualitatively indicated by the shaded area.

complex more realistic flows and we suspect this mechanism of
advection to be at the origin of the formation of birefringent strands.

We focus on wall stagnation point flows where the flow is away
from the wall. Examples of this are flows in the wake of a falling
sphere or of a fixed cylinder, as shown schematically in Fig. 1(a).
In particular, the flow past a fixed cylinder or sphere in a channel
has become a benchmark problem for numerical modelling of vis-
coelastic constitutive equations [11–13]. It is known that in such
flows a narrow region of high polymer extension may form, a so-
called b irefringent strand [14,15]. This region starts at a small but
finite distance downstream from the stagnation point, as indicated
schematically in Fig. 1(b), where a flow near a flat wall is depicted.

In this work, we consider a strictly two-dimensional version of
this flow, with a simplified, fixed velocity field obeying the basic
symmetry of a stagnation point at a wall (cf. [11]). We analyse this
case in detail for the UCM model [1,2,9] but also discuss in the end
the qualitative changes that occur for a FENE-P model.

Unlike the case of steady purely extensional flow, which was
analysed previously [6–8], the extension of the polymers does not
diverge for any extension rate. We find that a thin birefringent
strand forms, with a singularity at its centre. As argued above,
notwithstanding the simplifications we make in obtaining this
result, we believe that the analysis makes it clear how singular
behaviour emerges in general.

Unfortunately, our results cannot immediately be compared
quantitatively with experiments or numerical computations on
realistic cases like flow past a cylinder [12,13]. First, one should
keep in mind that in such situations, there may be two sources of
(near) singular behaviour: besides the one we analysed here, dom-
inated by the symmetry and boundary conditions of the velocity
field near the wall stagnation point, in viscoelastic flow past a cylin-
der large stress fields are already built up at the sides of the cylinder,
where the flow is mostly along the cylinder. These shear stresses
are advected toward the rear stagnation point. This effect is clearly
not present in the simplified geometry that we consider. Second,
our analysis is based on taking a fixed velocity field obeying the
basic symmetry, and we show how this leads to an essential sin-
gularity in the stress. In reality, of course, the velocity and stresses
are coupled indirectly through the momentum balance equation.
Through this coupling, the velocity field will also be affected in the
region of large stress gradients near the stress singularity. Since the
symmetry and expansion of the velocity near the stagnation point
cannot change in lowest order, we expect that there is an interme-
diate flow regime where the basic structure of the singularity is
not changed dramatically. This assumption is further supported by
recent simulations of a two-dimensional cross-slot flow by Poole et
al. [5]. There, the velocity profiles remained smooth even when the
flow changed its symmetry (the new type of purely elastic instabil-
ity discovered by Arratia et al. [4]), while stresses exhibit the typical
singular structure similar to the one discussed in [6,8]. At the same

time, numerical studies suggest that at sufficiently large flow rates,
this nonlinear coupling can become so strong that there may be no
steady state flow solution past a cylinder for Deborah numbers of
order unity [12,16]. The coupling and this effect are, unfortunately,
beyond the present approximation.

The layout of this paper is as follows. In Section 2 we introduce
the flow geometry and the models, and we briefly recapture similar-
ity solutions for UCM found by other authors [17,18]. We calculate
analogous solutions for a simplified version of this flow, where we
fix the velocity field, for UCM and FENE-P. In Section 3 we consider
more realistic boundary conditions, and we solve the constitutive
equations analytically. In Section 4 we consider the resulting stress
field (extension field) in more detail, showing that we find a narrow
region of high polymer extension, with a non-analytic stress pro-
file at the centre of the strand. We then discuss these results in the
light of more realistic flow profiles, and we conclude by discussing
the relevance of these results for computational and experimental
work.

2. Simplified stagnation flow of a UCM fluid

We consider incompressible planar stagnation flow of a UCM
fluid without inertia (creeping flow). The UCM constitutive equa-
tion for steady flow is [1]

T + �[(v · ∇)T − (∇v)T · T − T · (∇v)] = �(∇v + (∇v)T), (1)

where � is the relaxation time of the fluid and � is the Newtonian
viscosity. The momentum balance for creeping flow is

∇ · T − ∇p = 0, (2)

where p is the pressure. Incompressibility is given by

∇ · v = 0. (3)

The planar stagnation flow geometry we consider is depicted in
Fig. 2. We take the vertical direction as bounded, with length �.
Because of the solid wall, the boundary condition at the wall (y = 0)
is v = 0. At y = �, we impose vy = V , with V > 0. For the velocity
field, a similarity solution then exists, which is of the form [17,18]

vx = −x ′(y) and vy =  (y), (4)

where the boundary conditions imply  (0) = 0 and  ′(0) = 0.
Inspired by this solution, we take a fixed velocity field that sat-
isfies the boundary conditions and that would correspond to the
lowest-order approximation near the wall:

vx = −2
(
V

�2

)
xy and vy =

(
V

�2

)
y2. (5)

Note that these terms are the lowest order analytic terms in an
expansion in x and y away from a symmetric stagnation point at the
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